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Problem 1 (Analytic MLE):

In this problem, we analytically derive maximum likelihood estimators for the parameters of an example model
distribution. Most textbooks, including Duda et al, discuss the Gaussian example. The distribution we consider
here is called the gamma distribution.

The gamma distribution is univariate (one-dimensional) and continuous. It is controlled by two parameters,
the location parameter µ and the shape parameter ν.1 For a gamma-distributed random variable X, we write
X ∼ G (µ, ν). G is defined by the following density function:

p (x|µ, ν) :=

(
ν

µ

)ν
xν−1

Γ (ν)
exp

(
−νx
µ

)
,

where x ≥ 0 and µ, ν > 0.2 Whenever ν > 1, the gamma density has a single peak, much like a Gaussian. Unlike
the Gaussian, it is not symmetric. The first two moment statistics of the gamma distribution are given by

E [X] = µ and Var [X] =
µ2

ν
(1)

for X ∼ G (µ, ν). Here are some plots which should give you a rough idea of what the gamma density may look
like and how different parameter values influence its behavior:
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Left: The plot shows the density for different values of the location parameter (µ = 0.3, 0.5, 1.0, 3.0), with the
shape parameter fixed to ν = 2. Since ν > 1, the densities peak. As we increase µ, the peak moves to the
right, and the curve flattens. Middle: For µ = 0.5 fixed, we look at different values of the shape parameter
(ν = 2, 3, 4, 5, 19). Again, all the densities peak, with the peak shifting to the right as we increase ν. Right: If
ν < 1, the density turns into a monotonously decreasing function. The smaller the value of ν, the sharper the
curve dips towards the origin.

1. Write the general analytic procedure to obtain the maximum likelihood estimator (including logarithmic
transformation) in the form of a short algorithm or recipe. A few words are enough, but be precise:
Write all important mathematical operations as formulae. Assume that data is given as an i. i. d. sample

1In parametric statistics, we usually call parameters shape parameters if they are neither location nor scale parameters.
2The symbol Γ denotes the distribution’s namesake, the gamma function, defined by

Γ (ν) :=

∫ ∞
0

e−ttν−1dt .

The gamma function is a generalization of the factorial to the real line: Γ (n) = (n− 1)! for all n ∈ N. Fortunately, we will not have
to make explicit use of the integral.



x1, . . . , xn. Denote the conditional density in question by p (x|θ), and the likelihood by l (θ). Make sure
both symbols show up somewhere in your list, as well as a logarithm turning a product into a sum.

2. Derive the ML estimator for the location parameter µ, given data values x1, . . . , xn. Conventionally, the
ML estimator for a parameter is denoted by adding a hat symbol: µ̂. Given both the statistics of the
gamma distribution (cf. (1)) and what you know about MLE for Gaussians, the result should not come as
a surprise.

3. By now you should have some proficiency at deriving ML estimators, so a look at the gamma density will
tell you that things get more complicated for the shape parameter: ν appears inside the gamma function,
and both inside and outside the exponential. Thus, instead of deriving a formula of the form ν̂ := . . . ,
please show the following: Given an i. i. d. data sample x1, . . . , xn and the value of µ, the ML estimator ν̂
for the gamma distribution shape parameter solves the equation

n∑
i=1

(
ln

(
xiν̂

µ

)
−
(
xi
µ
− 1

)
− φ (ν̂)

)
= 0 . (2)

The symbol φ is a shorthand notation for

φ (ν) :=
∂Γ(ν)
∂ν

Γ (ν)
. (3)

In mathematics, φ is known as the digamma function.

Problem 2 (Numerical MLE):

This problem requires Matlab’s optimization and statistics toolboxes, which should be part of the ETH installa-
tions.

One reason why ML estimation is appealing for use in everyday statistics is its generic applicability. ML estimators
may be derived analytically for theoretical considerations, but to simply fit a model, one may as well rely on
numerical methods: Suppose we consider ML estimation an appropriate approach for a given problem, and that
we know the functional form of the likelihood. Then all we have to do in practice is to implement this likelihood
in Matlab and apply the numerical optimization functions from the optimization toolbox.

We ask you to implement numerical ML estimation for the parameters of the gamma distribution, because there
exists no closed form expression for the shape parameter:

1. Implement the log-likelihood of the gamma distribution as Matlab function llhood gamma(x, theta).
x = (x1, x2, . . . , xn) contains the samples and θ = (µ, ν) contains the location and shape parameter. Use
the function gamma to compute Γ(ν).

2. Implement a second function mlest(llfun, x) which takes two inputs:

• llfun: A function handle to any log-likelihood l (x, θ) :=
∑
i log p (xi; θ) which obeys the generic

signature llfun(x, theta). llhood gamma from above is one such function, but by using a function
handle instead of a hard-coded call, you can use mlest for any log-likelihood function.

• x : the vector of data samples.

Note that the sample x = (x1, x2, . . . , xn) must be handed to mlest as an argument, in order that it
can evaluate llfun on x. If you are unfamiliar on how to use function handles, i.e. passing references to
functions as arguments, have a look at the following Matlab help topics: function handle, fminsearch.

Calling optimization procedures in Matlab takes some getting used to. Please take the following technical
issues into account:

• Since the optimization toolbox provides only minimization procedures, you will have to transform the
maximization problem into a minimization problem. Don’t forget to reversely transform the result.

• The likelihood function llfun takes two parameters: the sample x and the model paramters θ, but the
maximization procedure targets only θ. Therefore, we use the so-called anonymous function handle:
the calling argument of the optimization routine fminsearch should be of the form (@(theta)

llfun(x, theta)). This tells the optimization to specifically target the parameter theta. Again,
have a look at the help description of the optimization routine, which provides examples for this type
of function call.
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• fminsearch takes as its second parameter an initial guess θ0, from where it starts the optimization
process. Depending on θ0, you may have to increase the maximum number of iterations and function
evaluations that fminsearch performs to get a good result. The documentation of optimset shows
you how to do it.

3. To test your implementation, produce a 1D gamma sample using gamrnd(a, b, n, d) from the statistics
toolbox. It takes 4 inputs where a = ν, b = µ

ν , and (n, d) are the dimensions of the output data. In our
case, set d = 1.

Pass both the handle to the gamma log-likelihood llhood gamma and the sample to your mlest imple-
mentation. Compare your numerical estimates with true values (used in gamrnd) and to mean(x), which
coincides with the analytical solution for µ̂, and var(x), which should be close to µ̂2/ν̂. Try different
parameter values and sample sizes. How close to the true value does your initial guess θ0 have to be?

Here is what we ask you to write down:

• Code for llhood gamma and mlest

• Your results for Question 2.3 and the conclusions you draw from them

Problem 3 (Terminology problems):

As consequence of the interdisciplinary character of machine learning, terminology is not always used consistently
throughout the machine learning community. We will consider an example of the term “maximum likelihood
estimation” being applied in a manner which is, from a statistician’s point of view, not quite correct.

A statistic of some importance is the entropy H, defined for a discrete random variable X with mass function P
and sample space X as

H (X) := −
∑
x∈X

P (x) log (P (x)) . (4)

Over the last few years, several publications have considered how to reliably estimate this statistic from a sample.
The following is a definition taken from one of these publications. Only two assumptions are being made:

• An arbitray data sample of size N is given.

• The symbol pN denotes the empirical distribution of the sample in question (with pN,i the empirical
probability at the ith sampling point).

Here is the definition from the article:

1. From the point of view of statistics, the cited works by Antos & Kontoyiannis and Strong et al were right not
to call this a maximum likelihood estimator. Can you explain why the term “maximum likelihood estimator”
is not properly used here?

2. Which further assumptions regarding the underlying distribution would we have to make in order to correctly
define a maximum likelihood estimator for the entropy (or any other statistic)?
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