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Problem 1 (Bayesian Learning):

In the previous exercise series, we applied the frequentist maximum-likelihood approach to estimate the parame-
ter(s) θ of the model. Here, we consider the approach of Bayesian inference instead.

Bayes’ rule relates the prior distribution p(θ) of the parameter and the likelihood p(X|θ) of the dataset X =
{x1, x2, . . . , xn} to the posterior distribution:

p (θ|X ) =
p (X|θ) p (θ)

p (X )
.

In this exercise, we assume that the samples Xi are (pairwise) independent and exponentially distributed:

Xi ∼ Exponential(λ),

for all i = 1, . . . , n. The exponential distribution is controlled by one rate parameter λ > 0, and its density is

p (x;λ) = λe−λx

for x ≥ 0. For x < 0, we let p (x;λ) = 0.

1. Draw the graph of p (x;λ) for λ = 1 in the interval x ∈ [0, 4]. A qualitative sketch suffices, but give the
precise function value for at least two points in the domain of p (x;λ).

2. What is the visual representation of the likelihood of individual data points? Draw it into the graph above
for the samples in a toy dataset X = {1, 2, 4} and λ = 1. How is the likehood of this toy dataset related
to that of the individual data points?

3. Would a higher rate (e.g. λ = 2) increase or decrease the likelihood for the toy data set?

We introduce a prior distribution p (λ) over the parameter of interest. Having determined the functional form of
the prior and likelihood, we want to compute the posterior. Doing it analytically can be hard in general, but it is
easy if the prior and likelihood form a conjugate pair. Then the posterior will have the same functional form as
the prior, only the parameters differ.

We choose the gamma distribution for the prior, because it forms a conjugate pair with the exponential likelihood.
Here we define Gamma(α, β) in slightly different form than in the last exercise sheet:

p (λ;α, β) = λα−1 β
αe−βλ

Γ(α)

for λ ≥ 0 and α, β > 0. Both definitions are common, but this one will simplify the following calculations.

Show that if the prior is gamma distributed

p (λ) = Gamma(α0, β0)

with hyperparameters (α0, β0), and the data likelihood p (X|λ) is a product of n exponential densities (as defined
above), then the posterior is again gamma distributed

p (λ|X ) = Gamma(αn, βn),

but with different parameters (αn, βn). To compute the parameters αn and βn:

1. Ignore multiplicative constants and normalization terms, such as the evidence term in Bayes’ formula (which
ensures that the posterior integrates to one).



2. Show that the posterior is proportional to a gamma distribution.

3. Infer the parameters by comparing your result for the posterior to the definition of the gamma distribution.

We turn to online estimation of the posterior, where the data is processed sequentially. For this purpose, we
define Xn = Xn−1 ∪ {xn}. The update is defined as

p(λ|Xn) =
p(xn|λ)p(λ|Xn−1)∫
p(xn|λ)p(λ|Xn−1)dλ

.

We know that after (n − 1) samples have been observed, the posterior p(λ|Xn−1) is gamma distributed with
parameters (αn−1, βn−1). Give a definition of the parameters (αn, βn) of the posterior p(λ|Xn) in terms of
(αn−1, βn−1).

To visualize the gradual change of shape of the posterior p(λ|Xn) with increasing n:

1. Generate n = 256 exponentially distributed samples with the true parameter λ = 1. You can use the
function exprnd from the statistics toolbox.

2. Use the values α0 = 2, β0 = 0.2 for the hyperparameters of the prior.

3. Visualize the updated posterior distribution after n = {4, 8, 16, 256}, in the range x = 0:0.01:4. Plot all
curves in the same figure (using hold all), and use the legend command to label each curve. Unfortu-
nately, using Matlab’s gamma runs into nummerical problems. One trick is to first compute the log-likelihood,
then take the exponential of this, i.e., compute exp(log(p(λ;α, β))). You can make use of Matlab’s gammaln
function.

4. What can you observe about the posterior distribution as n increases?

Finally, show that for large n (i.e. many data points), the maximum of the posterior

arg max
λ

p (λ|Xn)

agrees with the ML estimator

λ̂n =
1

1
n

∑n
i=1 xi

for the rate parameter of the exponential distribution:

1. Start with the fact that the gamma distribution attains its maximum value at α−1
β .

2. Plug in the values αn and βn that you have obtained for the posterior distribution.

3. Take the limit n→∞ and compare to λ̂.

Problem 2 (K-fold Cross Validation and Bootstrap):

In the lecture, we have looked at some model assessment methods. In this exercise, we will implement K-fold
cross validation and bootstrap. These two methods will come in useful for future exercises, so it is good to have
them handy.

We first present a simple classification problem. Assume that we are given a data source consisting of C classes,
each of which is normally distributed. We train a simple classifier in the following way:

• Each class c is represented by samples (training data) Xc ∼ p(x|Y = c) := N (Θc).

• We fit a Gaussian distribution into each class using maximum likelihood estimation, and obtain the model
parameters Θ̂c for c = 1, ..., C.

• To classify a test data value, we assume uniform priors, i.e., p(Y = 1) = .... = p(Y = C) = 1/C, and can
use Bayes theorem to compute the posterior: p(y|x) ∝ p(x|y)p(y). For a data value x, we assign it to the
class corresponding to the largest posterior.
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Please download the functions provided: train.m and classify.m.

In the function [mdl] = train(X,Y), X is the input data, where each column is a vector corresponding to a
single data point. The class of each datapoint is stored in the corresponding column in the row vector Y. The
output mdl is a structure array, where mdl(i).mu and mdl(i).Sigma are the estimated statistics for class
mdl(i).class .

The classification function is given by [Y] = classify(X,mdl). Here, Y is the predicted class label (i.e.,
mdl(i).class for which the model density value is largest).

Here’s what we ask you to do:

1. Implement the following functions:

• [err,var] = gauss cv(X,Y,K),
which performs K-fold cross validation for the model described above. To keep things simple1, call the
methods train and classify directly from your code, rather than handing them over as a function
handle. The return value err is the estimated error, with its associated variance denoted by var as
discussed in the class.

• [err,var] = gauss bootstrap(X,Y,B, type),
which now performs B rounds of bootstrap in place of cross validation. The parameter type is an
integer that indicates the type of bootstrap error computed (Lecture slides page 121).

– type=1: Original bootstrap estimation (too optimistic).

– type=2: e0 bootstrap estimator.

– type=3: .632 bootstrap estimator.

2. Now assume that X1 ∼ N (µ1,Σ1) and X2 ∼ N (µ2,Σ2), where

µµµ1 = (1, 1)
t
, Σ1 =

(
8 1
1 1

)
, µµµ2 = (−4, 0)

t
, Σ2 =

(
3 1
1 1

)
.

Draw n = 10 samples from each class using your gsample method. On the sampled dataset, apply both
cross validation (K = 2 and K = 10) and bootstrap methods (B = 200) to estimate the error and variance.
Report the error and variance obtained for each method.

3. Repeat the previous task, this time, use n = 100. Report the error and variance obtained for each model
selection method. Comment on your results obtained on both tasks.

Please submit only your answers to part 2 and 3 of the question.

Problem 3 (Bootstrap):

In the lecture we have learnt about the bootstrap technique. In bootstrap, B datasets are sampled which are used
to estimate the bias and the variance of an estimator. In non-parametric bootstrap, we sample N times from the
original dataset of N elements with replacement. Here, let us study some of the properties of this sampling with
replacement.

1. For N → ∞, show that the probability that a sample is not observed in a single bootstrap draw is
e−1 ≈ 0.368..

2. For a given N , what is the expected number of distinct samples in a single bootstrap draw? Explain your
answer.

3. Verify your answer by plotting a histogram of the #(distinct samples) over B = 10000 bootstrap draws.
Use N = 500 here. Can you say something about the variance of the set?

4. We will now look at how many possible different bootstrap sets that we can potentially obtain. For a given
value N , how many distinct sets can we possibly generate? Explain your solution. Compute the number of
such distinct sets for N = 10. We see that the number of distinct sets are large.

1Of course, if you are an enthusiatic, do feel free to code a general version that works with function handles.
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5. We can use bootstrap to give us an estimate on the variance of the mean statistic. Prove that in the limit
of B →∞, the bootstrap estimate of the variance of the mean is the same as the standard estimate of the
variance of the mean.

Problem 4 (Perceptron):

Our perceptron implementation will use the homogeneous coordinate representation of vectors, i.e. vectors
x ∈ Rd are represented by y = (x1, . . . , xd, 1)

t ∈ Rd+1. This representation turns affine hyperplanes {x ∈
Rd|wtx + w0 = 0} with normal vector w = (w1, . . . , wd)

t into hyperplanes through the origin of the form
{y ∈ Rd+1| (w1, . . . , wd, w0)

t
y = 0}.

To work with a perceptron, we need a two-class set of linearly separable data. As we have always done so far, we
will just generate the data by ourselves. A sample set of n data values in d-dimensional space will be represented
as a n×(d+ 1)-matrix S, so each row is the (homogeneous coordinate) representation of a single data point. This
matrix will contain the data of both classes, so in addition, we need class labels. Class labels will be represented
as a vector c of length n, with entries in {−1,+1}.

Here is what we want you to do:

1. Write a matlab function [S,c] = fakedata(a, n samples), which takes a (d+1)-dimensional hyperplane
normal vector a as its argument and returns a randomly generated, linearly separable two-class data set S
with class labels c. Which method (and which type of distribution) you use to generate the data is up to
you. Remember to generate only d random components for each vector, as the last component is 1. The
matlab function null might be useful: Calling null for a normal vector returns a set of vectors spanning
its nullspace, i.e. the corresponding hyperplane.

2. To evaluate a perceptron solution (a hyperplane classifier trained by a perceptron algorithm), write a function
c = classify(S,w). S is a sample data set and w the perceptron weight vector (which will be returned
by the perceptron training algorithm). c is a class label vector as described above.

3. Implement two versions of the perceptron training algorithm (cf. slide 110, or chapter 5 of the Duda book):

• The batch version with variable step size η (k) = 1
k , where k is the number of the current iteration.

• The fixed-increment single sample version.

Both functions should be of the form

[w,W history] = perceptrain(S,c),

where w is the normal vector of the hyperplane. W history is a matrix containing the history of the normal
vector throughout the training run, i.e. a (number of iterations) × (d+ 1) matrix, the rows of which are
the interim results for W.

A recommended sanity check is to train your perceptrain function on a fakedata sample, and to make
sure that the classifiers returned by your perceptron algorithms correctly classify their own training data.

4. Generate a 3D random vector a, do [S,c]=fakedata(a,100), and train both your perceptrons on this
set. Rerun fakedata to produce a test set, and check whether it is classified correctly.

5. Convert the data and the vectors into their corresponding 2D representation to make it more suitable for
plotting.

And here is what we want you to hand in as a solution:

1. A hardcopy of your source code (at least the essential parts).

2. For both implementations, hand us one plot showing the test data set and the classifier hyperplane, and
one showing the training data and the trajectory of the algorithm by visualizing W history.
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