
Machine Learning Laboratory

Dept. of Computer Science, ETH Zürich

Prof. Dr. Joachim M. Buhmann

Web http://ml2.inf.ethz.ch/courses/ml/

Email questions to: Alberto Giovanni Busetto

alberto.busetto@inf.ethz.ch

Exercises
Machine Learning
AS 2012

Series 4, Nov 6th, 2012

(SVMs)

Problem 1 (Support Vector Machines):

The objective of this exercise is to implement the 1-norm soft margin support vector machine. This SVM is
defined by the optimization problem

minimize 〈w,w〉+ C

l∑
i=1

ξi

with respect to ξ,w, b and subject to the constraints

yi (〈w,xi〉+ b) ≥ 1− ξi
ξi ≥ 0 .

Here, w denotes the weight vector of the hyperplane, xi are the training data points and ξi the corresponding
slack variables. The dual optimization problem is given by

maximize W (ααα) =

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

yiyjαiαjK (xi,xj) ,

with respect to ααα and subject to the constraints

l∑
i=1

αiyi = 0

0 ≤ αi ≤ C .

y1, . . . , yl denote the class labels for the training vectors xi. The αi are the Lagrange parameters, and K denotes
the kernel function. We write α∗i for the optimal values of the Lagrange parameters computed as solution of the
above dual problem.

The offset (bias) b∗ can be computed by noting that any support vector xi for which 0 < αi < C satisfies
yif(xi) = 1, resulting in

b∗ := yi −
∑
j∈SV

yjα
∗
jK (xi,xj) .

Whilst we can solve this for any support vector xi, for numerical stability, we compute this offset b by averaging
over the individual offset value given by all the support vectors.

From the solution of the maximization problem and the bias, the classification function is constructed as

f (x) :=

l∑
i=1

yiα
∗
iK (xi,x) + b∗ .

The predicted class label hyp ∈ {−1, 1} of a test value x is determined as

hyp := sign (f (x)) .

The SVM implementation consists of two matlab functions, one for training

[yALPHA, B, SV] = svmtrain(SAMPLES, CLASSES, C, KERNEL, PARAM),

and one for classification:

hyp = svmclass(X, yALPHA, B, SV, KERNEL, PARAM).



The parameters are:
yALPHA Lagrange parameters of the dual problem weighted by the label yiαi.
B Bias.
SV The support vectors.
SAMPLES The matrix of input vectors from the training data set, with each row corresponding to

one data vector.
CLASSES Vector of training class labels; CLASSES(i) specifies the class label of SAMPLES(i,:).
C Soft margin parameter (C in the optimization problem above)
KERNEL We want to be able to specify different types of kernels (see below), so we hand over this string

with possible values ’linear’, ’polynomial’ or ’rbf’.
PARAM The kernel parameters (d and σ, in the notation used below).
X Test data set: a matrix containing test data points as column vectors.
hyp The vector of predicted class labels hyp ∈ {−1, 1}.

The kernels are defined as:

Linear: K (x,y) = xty

Polynomial: K (x,y) =
(
xty + 1

)d
RBF: K (x,y) = exp

(
−‖x− y‖

σ

)
.

The set of support vectors is, in theory, given by { i |αi > 0}. In practice, we bound this away from zero by using
{ i |αi > ε}, where ε ≈ 10−8. We assume that everything closer to zero cannot be reliably labeled a support
vector due to the limited resolution of machine arithmetics.

Here is what we want you to do:

1. Download the archive file svmfiles.zip from the course webpage. The archive contains the following files:

• data1.txt, data2.txt, data3.txt - Data sets.

• cl1.txt, cl2.txt, cl3.txt - Class labels for the data sets.

• uspsdata.txt, uspscl.txt - US Postal Service data set and class labels files.

• pr loqo2.m - Quadratic optimization matlab code by Robert J. Vanderbei, Princeton University.

• svmplot.m - Matlab plot code.

2. Implement the functions svmtrain and svmclass. Remember that for training the classifier, we have to
solve the dual (!) optimization problem, which is what the pr loqo2.m code is for.

3. Train your implementation on the data sets data*.txt. Visualize the resulting decision functions using
svmplot. For each choice of the kernel, try different values for the kernel parameters and the margin
parameter C.

4. Cross-validate your SVM on the USPS (US Postal service) data set: Use a random subset of the data
(100 samples) for training. Then apply the classifier to the remaining points (make sure you delete the
training points from the test set!) and compare the results with the corresponding class labels. Once
again, use different kernels and parameters and try to determine a configuration which works well on the
data. If you are interested to visualize the i-th datapoint in the data set, you can do this by: figure;

colormap(’gray’); imagesc(reshape(uspsdata(i,:),16,16)’);

Please hand in the following:

1. A hardcopy of your code for svmtrain.

2. The plots you created using svmplot for the data*.txt data sets.

3. A short discussion of the performance of the different kernels for the different data sets.

2



Problem 2 (Lagrange Multipliers):

We consider a constrained optimization problem in standard form, for fi : Rn → R and gj : Rn → R:

minx∈Rn f0(x)
subject to fi(x) ≤ 0 for i = 1, . . . ,m

gj(x) = 0 for j = 1, . . . , p
,

f0(x) is called the objective function, fi(x) ≤ 0 are called the inequality constraints and gj(x) = 0 are called the
equality constraints. Such problems arise in many applications including machine learning.

The basic idea in Lagrangian duality is to take the constraints into account by augmenting the objective function
with a weighted sum of the constraint functions. The Lagrangian is defined as

L(x, λ, γ) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

γjgj(x),

where λ and γ are real valued vectors called the Lagrange multipliers with λi ≥ 0 and γi free. Hence λi is
the Lagrange multiplier associated with the ith inequality constraint fi(x) ≤ 0 and similarly γj is the Lagrange
multiplier associated with the equality constraint gj(x) = 0. The vectors λ and γ are also known as dual variables.

1. For x ∈ Rd, solve the following optimization problem:

argmax
x

f0(x) = 1− ‖x‖2

such that
d∑

i=1

xi = 1

where ‖ · ‖p denotes the Lp norm.

(a) Look up the definition for the Lp norm, and write it down mathematically. What is the common name
for the L2 norm?

(b) For a two dimensional input, draw the contours for ‖ · ‖p for the different values of p specified.

p = 0.5 p = 1

p = 2 p = 4

(c) Using the contours for p = 2, derive a geometrical argument for the solution to the optimization
problem in two dimensions, i.e., d = 2.

3



(d) Now solve the optimization problem for any arbitrary dimension d using Lagrange multipliers. Solve
this optimization problem and comment on the form of the solution vector.

2. Recall the online Perceptron training algorithm. The perceptron learns a hyperplane defined by wk at the
k-th iteration, after observing the k-th sample (xk, yk). Initially, w0 is the zero vector. Classification for
a new datapoint x is obtained by observing on which side of the hyperplane defined by wk that x lies on,
which can be read off the sign of the inner product wk

′x.

At the (k + 1)-st sample, the hyperplane wk+1 is updated from wk. Here, we consider an update scheme
that is based on minimizing:

wk+1 = argmin
w

1

2
‖w −wk‖22

subject to the constraint
`(w, (xk+1, yk+1)) ≤ 0

where we consider ` as the hinge loss:

`(w; (x, y)) =

{
0 yw′x ≥ 1
1− yw′x otherwise.

(a) Look at the L2 term in the optimization function. State in one sentence what it is trying to geomet-
rically minimize.

(b) Assume wk classifies the (k+1)-th sample (xk+1, yk+1) with `(wk, (xk+1, yk+1)) = 0, i.e., zero hinge
loss. What is the choice for wk+1 and why?

(c) How do we have to modify the feature space such that this classification model does not require an
offset bias?

(d) Is it possible for the classification hyperplane wk to classify a point x correctly, but yet induce a
non-zero hinge loss? To help justify your solution, please plot the hinge loss curve.

yw′x

`(w; (x, y))

(e) Compute the update rule for wk+1.

(f) How can this algorithm be kernelized? (Hint: Expand your optimization solution wk+1, such that it
only depends on w0 and the respective updates. What is the necessary and sufficient condition for an
algorithm, such that it can be kernelized? Observe the structure of your solution and draw similarities
from this to a kernelized solution.)

Problem 3 (Kernels and Computational Complexity):

A popular argument in favor of using kernels is that they can, in a certain sense, save a lot of computational
effort. In this problem, we will convince ourselves that this may actually be the case.

First recall that a kernel function computes a scalar product in a high-dimensional space in the following sense:
consider vectors in an input space Rd. We define a mapping φ into another space, called the feature space, with
dimension h:

φ : Rd → Rh . (1)

The kernel k of two vectors x,y in the input space is defined as

k(x,y) := 〈φ(x), φ(y)〉Rh . (2)

Note:

4



• The kernel evaluates both the mapping φ and the scalar product.

• The scalar product is computed in the feature space Rh.

The argument mentioned above is, in detail, the following: Assume that we wish to work with a high-dimensional
feature space Rh (to improve the separability of the data). Using a kernel can save us a lot of computational
effort, as compared to using the mapping φ and the scalar product 〈 . , . 〉Rh explicitly.

To illustrate the argument, we will use a polynomial kernel, because this particular kernel allows us to derive
explicit formulæ for the mapping φ. The kernel is defined as

k(x,y) := (〈x,y〉Rd + 1)
m
. (3)

1. For d = 2,m = 3, find a formula for the mapping φ. What is the dimension h of the feature space defined
by k?

2. For the general polynomial kernel (3), the number h of dimensions of the feature space is the number of all
possible monomials of degree ≤ m in the d input entries x1, ..., xd. Derive the formula for this number of
dimensions as a function of m and d. Whether you derive the formula by means of mathematics, literature
research or search engine literacy is up to you.
Hint: The number of monomials of exactly degree m in d input variables is given by the binomial coefficient(
d+m− 1

m

)
. The formula we are looking for is something quite similar.

3. Recall the digit classification problem: Each handwritten digit is scanned and rescaled to have size 16× 16,
so the input vector space is of dimension d = 256. How many monomial entries would we have to compute
for each vector φ(x) if we choose m = 2 or m = 4? Compare your results to the number of operations
necessary to evaluate the kernel function.

Kernel functions help to find a high dimensional linear discriminant where there is no linear discriminant in the
original space.

4. Illustrate why the exclusive OR cannot be solved using a single linear discriminant operating on the features.

5. Define a suitable polynomial (quadratic) kernel to solve this problem.

6. Illustrate how the proposed kernel solves the problem.

5


