
Machine Learning Laboratory

Dept. of Computer Science, ETH Zürich

Prof. Dr. Joachim M. Buhmann

Web http://ml2.inf.ethz.ch/courses/ml/

Email questions to: Sharon Wulff

sharon.wulff@inf.ethz.ch

Exercises
Machine Learning
AS 2012

Series 7, Dec 18th, 2012

(Kernel PCA, K-means)

Problem 1 (Kernel PCA):

Two of the methods, which we have seen during the course, Principal Component Analysis (PCA) and the
kernel method, can be combined into a machine learning algorithm known as kernel PCA. The lesson learned
from kernelized support vector machines seems to be that many complex structures in data can be linearized by
mapping into high-dimensional space (by means of the kernel trick). PCA is a very useful and widely applied
linear method, so can we apply the kernel trick to PCA?

Given is a set of data in low-dimensional space, x1, ...,xn ∈ RL. In addition, we have a kernel k, which implicitly
defines a mapping φ into a high-dimensional space RH :

k(x,y) = 〈φ(x)|φ(y)〉RH (1)

φ : RL → RH

〈 . | . 〉RH is the standard scalar product on RH . Once again, recall the kernel assumption that we can compute
k(x,y), but not φ(x). What we would like to do (if we could handle objects in RH) is:

1. Map the data into the high-dimensional space RH .

2. Apply standard PCA in RH . First step: Compute the empirical covariance matrix of the (mapped) data
φ(xi) into RH :

ΣH := Ê[φ(x)φ(x)t] ∈ RH×H (2)

3. Second step: To obtain an N -dimensional PCA projection, compute the first N eigenvectors of Σ:

v1, ...,vN (3)

4. Finally: Compute the projection P (φ(xi)) ∈ RN for each data point. The j-th component of the projection
is given by

Pj(φ(xi)) = 〈φ(xi)|vj〉RH . (4)

Note that we can choose the number of embedding dimensions N (which will usually be small, like N = 2 or
N = 3); but the vectors φ(xi) and the eigenvectors vi are of length H, and the size of the covariance matrix
is H × H. Even if H is finite, computing eigenvectors will be an O(H3) operation. To perform the above
algorithm, we will have to figure out a way to perform each of the steps by means of the kernel trick, including
the eigen-decomposition of ΣH . This exercise problem will take you through the derivation of the algorithm in a
step-by-step manner.

Reference formulæ

Recall that an empirical covariance matrix is a superposition of outer products of the form xxt:

Σ = Ê[xxt] =
1

n

n∑
k=l

xlx
t
l . (5)

(To keep things simple, we have assumed that the data is centered, so we do not have to subtract the mean when
computing the variance.) The outer product xxt of a vector with itself is a matrix with elements (xxt)ij = xixj .
As you will recall from the lectures on SVMs, the kernel matrix K is defined by

Kij := k(xi,xj) = 〈φ(xi)|φ(xj)〉RH . (6)



We denote the eigenpairs (eigenvalues and eigenvectors) of ΣH by (λl,vl), and those of K by (ρl,wl). Thus:

ΣHvi = λivi for i = 1, ...,H (7)

Kwj = ρjwj for j = 1, ..., n.

The data matrix of the sample is the matrix containing the sample points as its rows:

X :=

xt1
...
xtn

 ∈ RL×n (8)

The corresponding data matrix of the mapped data in RH will be denoted Φ:

Φ :=

φ(x1)t

...
φ(xn)t

 ∈ RH×n . (9)

Problems

Please show the following:

1. Show that an empirical covariance matrix Σ can be rewritten as

Σ =
1

n
XtX . (10)

Obviously, the same will then hold on RH :

ΣH =
1

n
ΦtΦ . (11)

2. Show that the kernel matrix K can be written as

K = ΦΦt . (12)

(We say that ΣH and K are dual up to the coefficient 1
n .) What are the sizes of ΣH and K?

3. Assume that (ρj ,wj) is an eigenpair of K. Use (11), (12) and the eigenvalue equations (7) to show that
vj := Φtwj is an eigenvector of ΣH and find corresponding eigenvalue λj .

4. With the above result, we can compute eigenvectors of ΣH from eigenvectors of K, but the vj are not
normalized (no unit vectors). Show that the unit vector ṽj (with respect to the norm defined by 〈 . | . 〉RH )
in the same direction is given by ṽj := 1√

ρj
vj .

5. Assume that we know the eigenvalues of K, have selected the N largest ones and computed the corre-
sponding eigenvectors w1, ...,wN . We are given a point x ∈ RL. Derive a formula which computes the
projection P (φ(x)) in (4) onto ṽ1, ..., ṽN using only the kernel and objects defined in RL. Please ensure
that the final projection formula does not explicitly contain φ or any vector in or matrix on RH .

6. Finally, summarize: Rewrite the (infeasible) algorithm on the previous page in terms of the derived results,
as a method that could actually be implemented. The input are the samples x1, ...,xn, the kernel k and the
number N of projection dimensions. The output are the projected data points (P1(φ(xi)), ..., PN (φ(xi)))

t

for i = 1, ..., n.

Problem 2 (K-means):

Show that the k-means algorithm (for Euclidean distance) will always converge. In the lecture the algorithm was
directly presented without discussing the explicit cost function that k-means is minimizing. We will show that the
algorithm optimizes the following cost function

J =

N∑
n=1

K∑
k=1

rnk‖xn − µk‖2.

Where rnk ∈ {0, 1} with
∑K
k=1 rnk = 1 and µk =

∑N
n=1 rnkxn∑N
n=1 rnk

.

2



1. How would you choose rnk to minimize J for given µk? Note that this corresponds to the Assignment step
of the k-means algorithm.

2. Compute δJ
δµk

and set it to zero. You should identify the Update step of k-means.

As both steps of the algorithm decrease the value of J , you’ve just proven, that the algorithm always converges.

3


