Exercises Machine Learning AS 2012

Series 7, Dec 18th, 2012 (Kernel PCA, K-means)

Machine Learning Laboratory Dept. of Computer Science, ETH Zürich Prof. Dr. Joachim M. Buhmann Web http://ml2.inf.ethz.ch/courses/ml/

Email questions to: Sharon Wulff sharon.wulff@inf.ethz.ch

Problem 1 (Kernel PCA):

Two of the methods, which we have seen during the course, Principal Component Analysis (PCA) and the kernel method, can be combined into a machine learning algorithm known as *kernel PCA*. The lesson learned from kernelized support vector machines seems to be that many complex structures in data can be linearized by mapping into high-dimensional space (by means of the kernel trick). PCA is a very useful and widely applied linear method, so can we apply the kernel trick to PCA?

Given is a set of data in low-dimensional space, $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^L$. In addition, we have a kernel k, which implicitly defines a mapping ϕ into a high-dimensional space \mathbb{R}^H :

$$k(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}) | \phi(\mathbf{y}) \rangle_{\mathbb{R}^{H}}$$

$$\phi : \mathbb{R}^{L} \to \mathbb{R}^{H}$$
(1)

 $\langle . | . \rangle_{\mathbb{R}^H}$ is the standard scalar product on \mathbb{R}^H . Once again, recall the kernel assumption that we can compute $k(\mathbf{x}, \mathbf{y})$, but not $\phi(\mathbf{x})$. What we would like to do (if we could handle objects in \mathbb{R}^H) is:

- 1. Map the data into the high-dimensional space \mathbb{R}^{H} .
- 2. Apply standard PCA in \mathbb{R}^H . First step: Compute the empirical covariance matrix of the (mapped) data $\phi(\mathbf{x}_i)$ into \mathbb{R}^H :

$$\Sigma^{H} := \hat{\mathsf{E}}[\phi(\mathbf{x})\phi(\mathbf{x})^{t}] \in \mathbb{R}^{H \times H}$$
⁽²⁾

3. Second step: To obtain an N-dimensional PCA projection, compute the first N eigenvectors of Σ :

$$\mathbf{v}_1, \dots, \mathbf{v}_N \tag{3}$$

4. Finally: Compute the projection $P(\phi(\mathbf{x}_i)) \in \mathbb{R}^N$ for each data point. The *j*-th component of the projection is given by

$$P_j(\phi(\mathbf{x}_i)) = \langle \phi(\mathbf{x}_i) | \mathbf{v}_j \rangle_{\mathbb{R}^H} .$$
(4)

Note that we can choose the number of embedding dimensions N (which will usually be small, like N = 2 or N = 3); but the vectors $\phi(\mathbf{x}_i)$ and the eigenvectors \mathbf{v}_i are of length H, and the size of the covariance matrix is $H \times H$. Even if H is finite, computing eigenvectors will be an $O(H^3)$ operation. To perform the above algorithm, we will have to figure out a way to perform each of the steps by means of the kernel trick, including the eigen-decomposition of Σ^H . This exercise problem will take you through the derivation of the algorithm in a step-by-step manner.

Reference formulæ

Recall that an empirical covariance matrix is a superposition of outer products of the form $\mathbf{x}\mathbf{x}^t$:

$$\Sigma = \hat{\mathsf{E}}[\mathbf{x}\mathbf{x}^t] = \frac{1}{n} \sum_{k=l}^n \mathbf{x}_l \mathbf{x}_l^t \,.$$
(5)

(To keep things simple, we have assumed that the data is centered, so we do not have to subtract the mean when computing the variance.) The outer product $\mathbf{x}\mathbf{x}^t$ of a vector with itself is a matrix with elements $(\mathbf{x}\mathbf{x}^t)_{ij} = x_i x_j$. As you will recall from the lectures on SVMs, the kernel matrix K is defined by

$$K_{ij} := k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i) | \phi(\mathbf{x}_j) \rangle_{\mathbb{R}^H} \,. \tag{6}$$

We denote the eigenpairs (eigenvalues and eigenvectors) of Σ^H by $(\lambda_l, \mathbf{v}_l)$, and those of K by (ρ_l, \mathbf{w}_l) . Thus:

$$\Sigma^{H} \mathbf{v}_{i} = \lambda_{i} \mathbf{v}_{i} \quad \text{for } i = 1, ..., H$$

$$K \mathbf{w}_{j} = \rho_{j} \mathbf{w}_{j} \quad \text{for } j = 1, ..., n.$$
(7)

The *data matrix* of the sample is the matrix containing the sample points as its rows:

$$\mathbf{X} := \begin{pmatrix} \mathbf{x}_1^t \\ \dots \\ \mathbf{x}_n^t \end{pmatrix} \in \mathbb{R}^{L \times n}$$
(8)

The corresponding data matrix of the mapped data in \mathbb{R}^H will be denoted Φ :

$$\Phi := \begin{pmatrix} \phi(\mathbf{x}_1)^t \\ \dots \\ \phi(\mathbf{x}_n)^t \end{pmatrix} \in \mathbb{R}^{H \times n} .$$
(9)

Problems

Please show the following:

1. Show that an empirical covariance matrix Σ can be rewritten as

$$\Sigma = \frac{1}{n} \mathbf{X}^t \mathbf{X} . \tag{10}$$

Obviously, the same will then hold on \mathbb{R}^H :

$$\Sigma^H = \frac{1}{n} \Phi^t \Phi . \tag{11}$$

2. Show that the kernel matrix K can be written as

$$K = \Phi \Phi^t . \tag{12}$$

(We say that Σ^H and K are *dual* up to the coefficient $\frac{1}{n}$.) What are the sizes of Σ^H and K?

- 3. Assume that (ρ_j, \mathbf{w}_j) is an eigenpair of K. Use (11), (12) and the eigenvalue equations (7) to show that $\mathbf{v}_j := \Phi^t \mathbf{w}_j$ is an eigenvector of Σ^H and find corresponding eigenvalue λ_j .
- With the above result, we can compute eigenvectors of Σ^H from eigenvectors of K, but the v_j are not normalized (no unit vectors). Show that the unit vector v

 *˜*_j (with respect to the norm defined by ⟨.|.⟩_{ℝ^H}) in the same direction is given by v

 *˜*_j := 1/√(ℓ_i) v_j.
- 5. Assume that we know the eigenvalues of K, have selected the N largest ones and computed the corresponding eigenvectors $\mathbf{w}_1, ..., \mathbf{w}_N$. We are given a point $\mathbf{x} \in \mathbb{R}^L$. Derive a formula which computes the projection $P(\phi(\mathbf{x}))$ in (4) onto $\tilde{\mathbf{v}}_1, ..., \tilde{\mathbf{v}}_N$ using *only* the kernel and objects defined in \mathbb{R}^L . Please ensure that the final projection formula does not explicitly contain ϕ or any vector in or matrix on \mathbb{R}^H .
- 6. Finally, summarize: Rewrite the (infeasible) algorithm on the previous page in terms of the derived results, as a method that could actually be implemented. The input are the samples x₁, ..., x_n, the kernel k and the number N of projection dimensions. The output are the projected data points (P₁(φ(x_i)), ..., P_N(φ(x_i)))^t for i = 1, ..., n.

Problem 2 (K-means):

Show that the k-means algorithm (for Euclidean distance) will always converge. In the lecture the algorithm was directly presented without discussing the explicit cost function that k-means is minimizing. We will show that the algorithm optimizes the following cost function

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2.$$

Where $r_{nk} \in \{0,1\}$ with $\sum_{k=1}^{K} r_{nk} = 1$ and $\mu_k = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}}$.

- 1. How would you choose r_{nk} to minimize J for given μ_k ? Note that this corresponds to the Assignment step of the k-means algorithm.
- 2. Compute $\frac{\delta J}{\delta \mu_k}$ and set it to zero. You should identify the Update step of k-means.

As both steps of the algorithm decrease the value of J, you've just proven, that the algorithm always converges.