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Motivation - Why Graphical

Models



Neuroscience

Manning et al. Topographic Factor Analysis: A Bayesian Model
for Inferring Brain Networks from Neural Data, PloS one, 2014.
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Image Generation

Karras et al. Progressive growing of gans for improved quality,
stability, and variation.ICLR 2018.
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Genomics

Mäkinen et al. Integrative Genomics Reveals Novel Molecular
Pathways and Gene Networks for Coronary Artery Disease,
PloS genetics, 2014. 4



Robotics

Grisetti et al. A tutorial on graph-based SLAM. IEEE Intelligent
Transportation Systems Magazine 2010

5



Course



Administrative Information

• Exam
20 minute oral exam in English

• Exercises
Each Tuesday from 15-16:00 in CAB G56; Exercises will be
incorporated into the Lectures.

• Contact
Please ask questions through the open forum using
https://piazza.com/.

• Additional Information
http://www.vvz.ethz.ch/Vorlesungsverzeichnis/
lerneinheit.view?semkez=2018W&ansicht=
KATALOGDATEN&lerneinheitId=126518&lang=en
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Head TA - Philippe Wenk
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Exercise Administration

Time & Room

Tuesday, 15-16, CAB G56

Exercise

• One exercise sheet per week.

• Hand it in one week afterwards.

• We return it to you the week after.

• No exercise next week!

Testat

• No Testat requirement for the exam.

• If you are a PhD student you might want to talk to your
Studiensekretariat.
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Related Courses

• Some overlap with the following courses:
Advanced Machine Learning - Prof. Buhmann

http://ml2.inf.ethz.ch/courses/ml/
Introduction to Machine Learning - Prof. Krause

https://las.inf.ethz.ch/teaching/
introml-s18

Probabilistic Artificial Intelligence - Prof. Krause
https:
//las.inf.ethz.ch/teaching/pai-f18

Computational Intelligence Lab - Prof. Hofmann
http://cil.inf.ethz.ch

Deep Learning - Prof. Hofmann http://www.da.inf.
ethz.ch/teaching/2017/DeepLearning/

• Other courses with some overlap are offered by the
computer vision group.
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Reading

Online Resources:

• Barber: http://web4.cs.ucl.ac.uk/staff/D.Barber/
pmwiki/pmwiki.php?n=Brml.Online

• MacKay http://www.inference.phy.cam.ac.uk/
mackay/itila/book.html

• Wainwright & Jordan http://www.eecs.berkeley.
edu/~wainwrig/Papers/WaiJor08_FTML.pdf

Classics:

• Bishop: Pattern recognition and machine learning

• Koller and Friedman: Probabilistic graphical models
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Course outline

• Learning from data

• Probabilistic models

• Graphical models

• Variational Inference

• State Space Models

• Dynamical Systems

• Factor Analysis

• Autoencoders

• Current research
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————————————————————

Probabilistic Modeling
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Reasoning under Uncertainty

Knowledge Representation
Use domain knowledge to design representative
models

Automated Reasoning
Develop a general suite of algorithms for
reasoning.

Earthquake Burglar

Radio

Alarm

Phonecall

Deal with uncertainty inherent in the real world using
the notion of probability.
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Graphical Models

Earthquake Burglar

Radio

Alarm

Phonecall

Graphical Models provide a compact representation of two
equivalent perspectives:

• representation of a set of independencies

• factorization of the joint distribution
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Algorithms

Representation
What do the different edges mean and how these
can be used to model tasks in image analysis.

Learning
Given some empirical measurements (data),
estimate the parameters of the model which best
explains it.

Inference
For a given model, how to use it for making
decisions and reasoning about the task at hand.
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To do list for modeling

Representation
Develop techniques to represent dependencies
between variables using graphical models.

Learning
Given some empirical measurements (x, y),
estimate the parameters of the model
(θML, θMAP, . . .) which best explains them.

Inference
For a given model (θ), investigate various ways of
using it to make predictions, de-noise images,
etc.
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Machine Learning

Model the machine learning task as the joint probability

P(x, y).

example xi ∈ X for example a set of images.

label yi ∈ Y for example whether the digit is 1,3,4
or 8.

Training Data Consists of examples and associated labels,
which are used to train the machine.

Testing Data Consists of examples and associated labels.
Labels are never used to train machine,
only to evaluate its performance

Predictions Output of the trained machine.
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Supervised learning

Let X = {set of d× d images}
and Y = {0,1, . . . ,9} = {set of labelings}.

Problem: Given labeled training data

D =
{

(X1, Y1), . . . , (Xn, Yn)
}
⊂ Xn × Yn,

find a function
f̂ : X︸︷︷︸

images

→ Y︸︷︷︸
labels

that correctly classifies all images – including new ones.
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Learning a function

Suppose we have a class of functions F = {fθ : X→ Y|θ ∈ Θ}.

Empirical risk minimization Define

θ̂ := argmin
θ∈Θ

EP̂

[
1[fθ(xi) 6= yi]

]

How to interpret EP̂

[
1[fθ(xi) 6= yi]

]
?

Number of incorrect classifications made by fθ on the training
data.

Empirical risk minimization finds the function f
θ̂

that makes
the fewest mistakes on the training data.
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Linear Regression

Consider the problem of linear regression,

y = θᵀx + ε

where the loss is the mean squared error:

min
θ

n∑
i=1

(θᵀxi − yi)
2

1. How are examples represented?

2. How are labels represented?

3. What does the machine estimate?

4. What does the machine output?
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Unsupervised learning

Problem: Given

• class of models P(X; θ) for θ ∈ Θ and

• unlabeled data D = (x1, . . . , xn) ∈ Xn

• sampled i.i.d. from unknown distribution P(X),

find the model θ̂ that “best fits” the data.

In other words, want P(X; θ̂) ≈ P̂(X) or, better, P(X; θ̂) ≈ P(X).
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The likelihood

Suppose we have a class of probability distributions

M = {P(x|θ)|θ ∈ Θ} on X.

The probability of the observations taken as a function
where x is fixed and θ varies

L(θ|x) := P(x|θ),

is called the likelihood.

L(θ|x):

• “how likely is parameter θ to have generated x?”

or

• “how well does θ explain x?” 21



Learning a model

Maximum likelihood estimation (ML)

Given data D = (x1, . . . , xn) ∈ Xn, let

L(θ|D) := P(D|θ) :=
N∏
i=1

P(xi|θ)

be the likelihood of the parameters given the data.

Note: Assume datapoints are independently, identically
distributed (i.i.d.) given θ!

Goal Find the parameter θ that is most likely to have
generated the data D = (v1, . . . , vN).
Definition: the maximum likelihood estimator (MLE) is

θ̂ML = arg max
θ∈Θ

L(θ|D).
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The negative log-likelihood

We usually minimize the negative Log Likelihood
− log P(x|θ) since,

• Logarithm is monotonic: arg min f(x) = arg min log f(x)

{minimize negative log-likelihood}↔ {maximize
likelihood}

• Simplifies math: log
∏

i f(xi) =
∑

i log f(xi)

• Better numerical behavior:

Relation to empirical risk minimization (Exercise:) Show
computing the MLE↔ minimizing empirical risk for

`(f , x) = − log f(x).
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Probabilistic Inference



(Conditional) Independence of RVs

Independence of Random Variables

RVs X, Y are independent iff

p(x, y) = p(x)p(y).

I.e.: In a simultaneous draw, the value taken by X does not
depend on the value taken by Y and vice versa.

Conditional Independence of Random Variables

RVs X, Y are conditionally independent given Z, iff

p(x, y|z) = p(x|z)p(y|z).

This however does not imply independence of the RVs X and
Y.
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Marginalization and its exponential running time

Marginalization

Assume a joint distribution of RVs X1, . . . ,XN is given

p(x1, . . . , xN).

Often we’re interested in marginals of RVs XS, where S is a
subset of indices of the variable indices. The marginal can
be computed as

p(xS) =
∑

x{1,...,N}6∈S

p(x1, . . . , xN)

Summation is expensive

Assume each X can take K different values, and S = {1}. A
full summation will have KN−1 summands, i.e. running time
exponential in the number of variables!
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Expressing Joint distributions

Example: Autonomous shooting device

Assume we have a simple model for a self-shooting device
with three variables: Xburglar,Xalarm,Xshoot each taking values
in {0,1}, the joint probability can be specified by giving the
probability for each configuration P(xbu, xal, xsh).

Joint distribution

We can specify a joint distribution as follows:

Xburglar Xalarm Xshoot P(· )
0 0 0 0.576
0 0 1 0.144
0 1 0 0.024
0 1 1 0.056
1 0 0 0.032
1 0 1 0.008
1 1 0 0.048
1 1 1 0.112

26



Graphical Models

Say we have the following graphical model for the previous
example:

Xbu Xal Xsh

Figure 1: Illustrating the joint distribution by a graphical model.

Here the arrows show conditional dependencies. Again: you
can not conclude that Xsh is independent of Xbu only because
they are not connected.
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Factorising joint distributions

Incorporating Independence

From the graphical model we can write the joint as:

p(xbu, xal, xsh) = p(xsh|xal)p(xal|xbu)p(xbu)

Alternative specification of the joint distribution

Use conditional probability tables according to the
dependencies.

Xbu P(Xbu)

0 0.8
1 0.2

Xbu Xal P(Xal|Xbu)

0 0 0.9
0 1 0.1
1 0 0.2
1 1 0.8

Xal Xsh P(Xsh|Xal)

0 0 0.8
0 1 0.2
1 0 0.3
1 1 0.7
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Elimination Algorithm

In the previous example we might be interested in the
probability of the shooting device shooting or not shooting
some target, i.e. P(xsh) :

P(xsh) =
∑
xal,xbu

P(xbu, xal, xsh)

We can use the factorization from above:

P(xsh) =
∑
xal,xbu

P(xsh|xal)P(xal|xbu)P(xbu)

We can push in the sum:

P(xsh) =
∑
xal

P(xsh|xal)
∑
xbu

P(xal|xbu)P(xbu).

For a larger chain this makes a huge difference
computationally: O(2N) vs. O(N), with N the number of
variables.
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Inference in Bayesian Networks (Williams, 2006 and Barber, 2012)

Rain Sprinkler

HolmesWatson

Interesting questions:

• If Holmes’ lawn is wet, was it the rain or the sprinkler?
• If Watson’s lawn is also wet how does this change things?

To answer these question we must do inference.

Lets plug some numbers in...
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Why Bayesian Networks?

Rain Sprinkler

Holmes

Recall: Bayes’ Theorem

posterior ∝ likelihood× prior

In our example:

• prior (probability of the events occuring)

p(r = yes, s = yes) = p(r = yes)p(s = yes)

• "likelihood" (observation model) p(h = yes|r, s)

• posterior (conditioning on observed evidence)
p(s|h = yes), p(r|h = yes)
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Next week & Open Master’s thesis topics

Open master’s thesis topics

• Brain Connectivity Estimation a

• Online Outlier Detection

• Sleep Classification

• Model Selection for Dynamical Systems

• Simulator for Robotics Platform

• Large-Scale Parameter Inference in Dynamical Systems

• Analysis of the effects of smoking using mass-spec. data

Plan for next week

• Gaussian Mixture (EM)

• Variational Inference

• Belief Propagation
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Questions?
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