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Recall Autoencoding
Variational Bayes



Black Box is easy to implement!

Black-Box Stochastic Variational Inference
in Five Lines of Python

David Duvenaud Ryan P. Adams
dduvenaud@seas.harvard.edu rpa@seas.harvard.edu
Harvard University Harvard University
Abstract

Several large software engineering projects have been undertaken to support
black-box inference methods. In contrast, we emphasize how easy it is to con-
struct scalable and easy-to-use automatic inference methods using only automatic
differentiation. We present a small function which computes stochastic gradients
of the evidence lower bound for any differentiable posterior. As an example, we
perform stochastic variational inference in a deep Bayesian neural network.



Gradient Estimates of the ELBO

ELBO = Eg, [log py(z, x)] — Eq[log q.(z)]
where v are the parameters of the variational distribution and
f the parameters of the model (as before).
Aim: Maximize the ELBO

Problem: Need unbiased estimates of V, yELBO.



Algorithm 1 Black Box Variational Inference

1: Input: data x, model p(x,z), variational family g,(z),

2: while Stopping criteria is not fulfilled do

3:  Draw L samples z ~ q,(2)

4 Update variational paramater using the collected samples

L
1
p 49+ 0c; Y Viogq(z)(logp(x. 27) ~ logq(z))
=1

5: Check step size and update if required!
6: end while

Note: Active research area (problem) is the reduction of the
variance of the noisy gradient estimator.
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“The Spectator Blog: ML Trick of the Day
http://blog.shakirm.com/2015/11/
machine-learning-trick-of-the-day-5-1log-derivative-trick/


http://blog.shakirm.com/2015/11/machine-learning-trick-of-the-day-5-log-derivative-trick/
http://blog.shakirm.com/2015/11/machine-learning-trick-of-the-day-5-log-derivative-trick/

Comparison

Score Function (reinforce)

« Differentiates the density V,q(z,v)

e Works for discrete and continuous models

e Works for large class of variational approximations
e Variance is a big issue

Pathwise (reparameterization)

« Differentiates the function V,[log p(x,z) — log q(z, v)]
e requires differentiable models

e requires variational models to have special form

e In practice better behaved variance

Appendix D in https://arxiv.org/pdf/1401.4082.pdf
provides a discussion about variance of both approaches.


https://arxiv.org/pdf/1401.4082.pdf
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*NIPS Variational Inference Tutorial 2016
https://media.nips.cc/Conferences/2016/Slides/6199-Slides.pdf


https://media.nips.cc/Conferences/2016/Slides/6199-Slides.pdf

GAN Progress”

‘Brundage et.al. 2018 https://imgl.wsimg.com/blobby/go/
3d82daa4-97fe-4096-9cbb-376b92c619de/downloads/1c6q2kcdv_
50335. pdf


https://img1.wsimg.com/blobby/go/3d82daa4-97fe-4096-9c6b-376b92c619de/downloads/1c6q2kc4v_50335.pdf
https://img1.wsimg.com/blobby/go/3d82daa4-97fe-4096-9c6b-376b92c619de/downloads/1c6q2kc4v_50335.pdf
https://img1.wsimg.com/blobby/go/3d82daa4-97fe-4096-9c6b-376b92c619de/downloads/1c6q2kc4v_50335.pdf

Progress GANs vs. State of the art VAE

GAN "

SIS,

2014 2015

2017

Recent VAE"

99a9a9aY

*Brundage et.al. 2018 https://arxiv.org/pdf/1802.07228.pdf
“Zhao et.al 2017 https://arxiv.org/pdf/1702.08658.pdf



https://arxiv.org/pdf/1802.07228.pdf 
https://arxiv.org/pdf/1702.08658.pdf

Variational Autoencoders
e for image generation, necessity to reconstruct each pixel
e reparametrization is not applicable to discrete latent variables
e usually only allows to use a fixed standard normal as a prior

¢ images are often blurry compared to high-fidelity samples
generated by GANs

* allows for efficient Bayesian inference
Generative Adversarial Networks
* Instability of training

* mode collapse i.e. generated samples are often only from a few
modes of the data distribution

* only visual inspection since GANs do not support inference (can
additionally train an inference network)
¢ does not support discrete visible variables
Generally: We are unable to control the attributes of generated sam-

ples e.g. aim for regularization which enforces disentangled latent

10
codes.



Gan Zoo’

Cumulative number of named GAN papers by month

Total number of papers

Year

* . . . 11
https://github.com/hindupuravinash/the-gan-zoo



Gradient Estimation

Policy Gradient Methods for
Reinforcement Learning with Function
Approximation

Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour
AT&T Labs — Research, 180 Park Avenue, Florham Park, NJ 07932

Abstract

Function approximation is essential to reinforcement learning, but
the standard approach of approximating a value function and deter-
mining a policy from it has so far proven theoretically intractable.
In this paper we explore an alternative approach in which the policy
is explicitly represented by its own function approximator, indepen-
dent of the value function, and is updated according to the gradient 12

of expected reward with respect to the policy parameters. Williams'’s
sl NanTats Ta ~Dprs I BN Y DIgEEE 7Y Sy | N P, PRy Y



Reinforcement learning of motor skills with policy gradients

Jan Peters®P#, Stefan Schaal b<

2 Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tibingen, Germany
b University of Southern California, 3710 S. McClintoch Ave - RTH401, Los Angeles, CA 90089-2905, USA
© ATR Computational Neuroscience Laboratory, 2-2-2 Hikaridai, Seika-cho, Soraku-gun Kyoto 619-0288, Japan

ARTICLE INFO

ABSTRACT

Article history:

Received 11 September 2007
Received in revised form

24 February 2008

Accepted 24 February 2008

Keywords:
Reinforcement learning
Policy gradient methods
Natural gradients
Natural Actor-Critic
Motor skills

Motor primitives

Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the
principles of learning will be crucial in order to achieve true autonomy in advanced machines like
humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs.
While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from
demonstration, it is only reinforcement learning that offers a general approach to the final trial-and-error
improvement that is needed by each individual acquiring a skill. Neither neurobiological nor machine
learning studies have, so far, offered compelling results on how reinforcement learning can be scaled to
the high-dimensional continuous state and action spaces of humans or humanoids. Here, we combine
two recent research developments on learning motor control in order to achieve this scaling. First, we
interpret the idea of modular motor control by means of motor primitives as a suitable way to generate
parameterized control policies for reinforcement learning. Second, we combine motor primitives with the
theory of stochastic policy gradient learning, which currently seems to be the only feasible framework
for reinforcement learning for humanoids. We evaluate different policy gradient methods with a focus
on their applicability to parameterized motor primitives. We compare these algorithms in the context of
motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic
outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this
reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic
robot arm.
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Gradient Estimation

Gradient Estimation Using
Stochastic Computation Graphs

John Schulman'-? Nicolas Heess'
joschuleecs.berkeley.edu heess@google.com

Theophane Weber! Pieter Abbeel®
theophane@google.com pabbeel@eecs.berkeley.edu

! Google DeepMind 2 University of California, Berkeley, EECS Department

Abstract

In a variety of problems originating in supervised, unsupervised, and reinforce-
ment learning, the loss function is defined by an expectation over a collection
of random variables, which might be part of a probabilistic model or the exter-
nal world. Estimating the gradient of this loss function, using samples, lies at 14
the core of gradient-based learning algorithms for these problems. We introduce



Policy Optimization”

Trust Region Policy Optimization

John Schulman
Sergey Levine
Philipp Moritz
Michael Jordan
Pieter Abbeel
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University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural policy gradient methods and is effec-
tive for optimizing large nonlinear policies such
as neural networks. Our experiments demon-

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al., 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovié, 2009). The in-
ability of ADP and gradient-based methods to consistently
beat gradient-free random search is unsatisfying, since
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*https://sites.google.com/site/trpopaper/
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Some Scepticism”

arg minpag About

The Policy of Truth

Ben Recht  Feb 20, 2018

This is the sixth part of "An Outsider’s Tour of Reinforcement Learning.” Part 7
is here. Part 5 is here. Part 1 is here.

Our first generic candidate for solving reinforcement learning is Policy
Gradient. 1 find it shocking that Policy Gradient wasn't ruled out as a bad idea
in 1993. Policy gradient is seductive as it apparently lets one fine tune a
program to solve any problem without any domain knowledge. Of course,
anything that makes such a claim must be too general for its own good.
Indeed, if you dive into it, policy gradient is nothing more than random
search dressed up in mathematical symbols and lingo.

*http://www.argmin.net/2018/02/20/reinforce/ 16
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Evaluating Deep
Representation Learning




The Problem - Metrics

How do we evaluate generative models?

e For tractable likelihood models: Evaluate generalization
by reporting likelihoods on test data

e Proxy to likelihood might be available e.g. ELBO for VAEs.

e Visual Evaluation or e.g. using some metrics like
Inception Scores, Frechet Inception Distance, Kernel
Inception Distance based on heuristics like diversity,
sharpness, similarities in feature representation ....

Difficult Problem (recall guest lecture) ....

Are GANs Created Equal? A Large-Scale Study

Mario Lucic* Karol Kurach* Marcin Michalski  Olivier Bousquet  Sylvain Gelly
Google Brain 17



How to evaluate latent representation

If available, we can evaluate the latent representation using
the metric from a downstream task e.g. accuracy for
semi-supervised learning.

For unsupervised evaluations can be based on:

e Clustering using some attribute labels available e.g. color
in MNIST.

e Compression
* 'Disentanglement’

Problem: At least partially a renaming of the problem i.e
shifts the focus from how to evaluate representations to the
evaluation of clusterings ...

18



Clustering’

Example: Cluster based on learned 2D representation, color
denotes true labels.

—10 0 10

Problem: How do we validate clustering? (Spring 2019: Prof. J.
Sti ing Theory)
*Makhzani et.al Adversarial Autoencoders 2016
https://arxiv.org/pdf/1511.05644.pdf
19
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¢ Combination of deep representation learning with
dynamics

¢ Disentanglement
e Summary

20



Questions?
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