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Evaluating Deep
Representation Learning



The Problem - Metrics

How do we evaluate generative models?

e For tractable likelihood models: Evaluate generalization
by reporting likelihoods on test data

e Proxy to likelihood might be available e.g. ELBO for VAEs.

e Visual Evaluation or e.g. using some metrics like
Inception Scores, Frechet Inception Distance, Kernel
Inception Distance based on heuristics like diversity,
sharpness, similarities in feature representation ....

Difficult Problem (recall guest lecture) ....

Are GANs Created Equal? A Large-Scale Study

Mario Lucic* Karol Kurach* Marcin Michalski  Olivier Bousquet  Sylvain Gelly
Google Brain 2



How to evaluate latent representation

If available, we can evaluate the latent representation using
the metric from a downstream task e.g. accuracy for
semi-supervised learning.

For unsupervised evaluations can be based on:

e Clustering using some attribute labels available e.g. color
in MNIST.

e Compression
* 'Disentanglement’

Problem: At least partially a renaming of the problem i.e
shifts the focus from how to evaluate representations to the
evaluation of clusterings ...



Clustering’

Example: Cluster based on learned 2D representation, color
denotes true labels.
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Problem: How do we validate clustering? (Spring 2019: Prof. J.
Sti ing Theory)

“Makhzani et.al Adversarial Autoencoders 2016
https://arxiv.org/pdf/1511.05644.pdf


https://arxiv.org/pdf/1511.05644.pdf

Disentanglement




Recall: Images to Torques

visual foresight

i@g*ﬂ

unlabeled video
experience

Fig. 1. Using our approach, a robot uses a learned predictive model of
images, i.e. a visual imagination, to push objects to desired locations.

Finn and Levine, Deep Visual Foresight for Planning Robot
Motion, ICRA 2017



Qutput
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*Isomura and Toyoizumi, A Local Learning Rule for Independent
Component Analysis, Sci. Reports 2016 6



The Problem’

Example of State of the art:

Monet 7_ Photos Zebras { Horses Summer Z_ Winter

winter — summer

photo —>Monet horse — zebra

Problem: Impressive results but would like to change factors
on more granular level e.g. shape of mountain, color of
rooftop, trees in background,

*Zhu, Park et.al Cycle GAN https://arxiv.org/pdf/1763.10593.pdf



https://arxiv.org/pdf/1703.10593.pdf

The Problem’

Representation Learning: A Review and New
Perspectives

Yoshua Bengiof, Aaron Courville, and Pascal Vincent!
Department of computer science and operations research, U. Montreal
t also, Canadian Institute for Advanced Research (CIFAR)

<+

*Bengio et.al Representation Learning: A Review and New Perspectives
https://arxiv.org/pdf/1206.5538.pdf


https://arxiv.org/pdf/1206.5538.pdf

The Problem’

Task A Task B Task C
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Source: Bengio (2013)

“slides courtesy of Raphael Suter



Disentanglement

arbitrariness: X = D(E(x)) = D(f(f~%(E(x)))) = D(E(x))
Disentanglement <= splitting sources of variation

e Supervised: split known factors from unknowns
e Unsupervised: independence regularization, e.g.:

* B-VAE: D (94(2(x)]lp(2))
* FactorVAE, B-TCVAE: TC(z) = Dk (q(2)||T1; a(2))
* DIP-VAE: factorize q4(2) = [ qs(2|x)p(x) dx

Problems: How to enforce 'disentanglement’ during
training? How to find a trade-off between terms e.g. give up
on reconstruction to what extent? (Recall - Are all GANs
created equal?)
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Causal Perspective
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Disentangled Generative Factors
C+ N.
Gi < fi(PAS,N;), PAS C {Cy,...,C/}, i=1,...,K

X < 9(G,Ny)
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Unified Probabilistic Model

Generative Factors
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Feature Representation
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Robustness of
Representations




Information Based Validation

Ridgeway & Mozer (2018)

e Ground truth G 20 [1.00] 1 1.75
* Mutual information I(Z;, G;) 23 [1.00] 1 1.50
e (or feature importance) 25 10.76] 1 153
+ Demand sparse rows 26 [0.07] 2;2

27[0.96] 025

shape -
scale |
posX -
posY -

orientation
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Interventional Robustness

Post Interventional Disagreement

PIDA(L|g1.g]") =

d <E[ZL|dO(G/ < g1)],E[Z.|do(G| < g/, G + gf)])



Interventional Robustness

Expected Maximum PIDA

EMPIDA(L|I,)) = Eg, [supgA PIDA(L\g/,ng)}
J



Interventional Robustness

Interventional Robustness Score

L EMPIDA(L|1
IRS(L|1,J) :==1— EMPIDA(Ll(Z),({l,..).,K}) €[0,1]




Interventional Robustness
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Special Case: Disentanglement
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Robustness as Complementary Viewpoint
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e Rare events

¢ Cumulative effects
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Visualizing Robustness

Plot: E[Z)|gi-,do(G; + gj)]

Robust Feature

Parent = posY | IRS = 0.82

=
i
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Tnt. g_0'(shape) int. g_1 (scale) int.g_2 (orientation) int-g_3 (posx] 94 (posv)
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Visualizing Robustness

Plot: E[Z)|gi-,do(G; + gj)]

Robust Feature

Parent = posY | IRS = 0.82
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disentangled but not robust

Parent = scale | IRS = 0.14

int. g_0'(shape) 9.1 (scale) int. g2 (orientation) Tnt. g_3 (posX] Tnt. g_d (posY]
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Recall Are all GANs created equal:

Model IRS FI MI Info

VAE 0.33 (5) 0.23 (4) 0.90 (3) 0.82 (1)
Annealed -VAE 0.57 (2) 0.35 (2) 0.86 (5) 0.79 (4)
DIP-VAE 0.43 (4) 0.39 (1) 0.89 (4) 0.82 (1)
FactorVAE 0.51 (3) 0.31 (3) 0.92 (1) 0.79 (4)
B-TCVAE 0.72 (1) 0.16 (5) 0.92 (1) 0.74 (5)

For more Details: Raphael Suter et.al. Interventional
Robustness of Deep Latent Variable Models,
https://arxiv.org/pdf/1811.00007.pdf
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https://arxiv.org/pdf/1811.00007.pdf

Problem

Challenging Common Assumptions in the Unsupervised
Learning of Disentangled Representations:

In recent years, the interest in unsupervised learning of disentangled representations has significantly increased.
The key assumption is that real-world data is generated by a few explanatory factors of variation and that these factors
can be recovered by unsupervised learning algorithms. A large number of unsupervised learning approaches based
on auto-encoding and quantitative evaluation metrics of disentanglement have been proposed; yet, the efficacy of the
proposed approaches and utility of proposed notions of disentanglement has not been challenged in prior work. In this
paper, we provide a sober look on recent progress in the field and challenge some common assumptions.

We first theoretically show that the unsupervised learning of disentangled representations is fundamentally
impossible without inductive biases on both the models and the data. Then, we train more than 12 000 models covering
the six most prominent methods, and evaluate them across six disentanglement metrics in a reproducible large-scale
experimental study on seven different data sets. On the positive side, we observe that different methods successfully
enforce properties “encouraged” by the corresponding losses. On the negative side, we observe that in our study (1)
“good” hyperparameters seemingly cannot be identified without access to ground-truth labels, (2) good hyperparameters
neither transfer across data sets nor across disentanglement metrics, and (3) that increased disentanglement does not
seem to lead to a decreased sample complexity of learning for downstream tasks.

These results suggest that future work on disentanglement learning should be explicit about the role of induc-
tive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned
representations, and consider a reproducible experimental setup covering several data sets.

For more Details: Locatello et.al.

https://arxiv.org/pdf/1811.12359.pdf
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Outlook




Deep Bayes
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(a) General scheme for arbitrary transitions. (b) One particular example of a latent transition: local
linearity.

Karl et. al. Deep Variational Bayes Filters: Unsupervised
Learning of State Space Models from Raw Data, ICLR 2017
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Deep Bayes
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(c) Ground truth (top), reconstructions (middle), generative samples (bottom) from identical initial latent state.

Karl et. al. Deep Variational Bayes Filters: Unsupervised
Learning of State Space Models from Raw Data, ICLR 2017 22



Kalman Variational Autoencoders
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Fraccaro et. al. A Disentangled Recognition and Nonlinear

Dynamics Model for Unsupervised Learning, NIPS 2017
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Announcement - Guest Lecture

Isabel Valera (14th of December)

Temporal point process:
A random process whose realization consists of
discrete events localized in time

Discrete events

- | : ~NOeUZE |
- % time

t1 to t3 t t=T
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Plan for December

¢ Next week NO LECTURE (NIPS)

e Temporal Point Processes (14th December, guest lecture
Isabel Valera)
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Questions?
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