Introduction and Applications of

Isabel Valera
MPI for Intelligent Systems

ETHZ LECTURE, 14 DECEMBER 2018



Many discrete events in continuous time
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Variety of processes behind these events

Events are (noisy) observations of a
variety of complex dynamic processes...
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Example I: Information propagation
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Friggeri et al., 2014
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Example Il: Knowledge creation

7 ol Barack Obama 03:21, 20 September 2016
;
o *’ K) From Wikipedia, the free encyciopedia i
: ™
5 \\J 4 "Barack" and "Obama" redirect here. For his father, see Barack Obama Sr. For other uses of "Barack", see Barack (disambiguation).
S Q 4‘ (disambiguation). . “gs &
is a|Kenyan|politician —

% 5 . . .
g s Barack Obama: Revision history J
=== was president of the Harvard - 03:41, 28 November 2016 Ranze (talk | contribs) . . (301,105 bytes) (+18) . . (E

civil rights attorney and taugh

N ’ \
WIKIPEDI A representing e 13t Distict 03:32, 28 November 2016 Xin Deui (talk | contribs) . . (301,087 bytes) (-68) . . ( x ¢ pOSSIbIe Vandahsm by MLM2016

States House of Representat

Die freie Enzyklopadie 00:57, 28 November 2016 SporkBot (talk | contribs) m . . (301,155 bytes) (-37)
07:08, 27 November 2016 Saiph121 (talk | contribs) . . (301,192 bytes) (+25) .

is an American politician .
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What are the pros and cons of living in Australia? ~

Hope it helps! )

v

[

Possible Challenges
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Example lll: Human learning

: 1st year computer science student
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Aren’t these event traces just time series?

AASEAAAARRTHNIATE AN I N
al ?

Di The framework of

temporal point processes

Wi provides a native representation

poch?

T T T T : What about time-related queries?
|

Epoch 1 Epoch 2 Epoch 3 ' t

Eversmrepeass L What it no event in one epoch?
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Outline of the Lecture

INTRO TO TEMPORAL POINT PROCESSES (TPPS)

1. Intensity function

2. Basic building blocks

3. Superposition

4. Marks and SDEs with jumps

APPLICATION: CLUSTERING EVENT SEQUENCES
1. Problem Statement
2. Introduction to DPMM
3. CRP + HP (a.k.a. HDHP)
4. Generative process



Temporal Point Processes
(TPPs):
Introduction

1. Intensity function



Temporal point processes

Temporal point process:
A random process whose realization consists of
discrete events localized in time

Discrete events

2N

— time

History, 7 (t) dN(t) €{0,1}  Dirac delta function

\ v
Formally: N(t) = f(f dN(s) By dN(t) = Z O(t —t;)dt
t; EH(t)



Model time as a random variable

densny
Prob. between [t t+dt) f* = f(t|H(t))
| |
| |
o T T T/(\ ' ime
oY , —
t t+dt t="1T
\
Y Prob. not before t
History, H(t) A

Likelihood of a timeline:  f"(t1) f"(t2) f*(t3) f*(t) S*(T) H



Problems of density parametrization

fi(t)  fr(t2) fH(t3)  f(2) :

| f y

' |
« JEI| P 1 '
- ' L

' — time
exp(w, 1p (t)) / exp(w, P*(t3)) _J exp(w, Y* (7)) 4

exp(w, ¢ (t2)) Z exp(w, " (t)) t Z

Z

It is difficult for model design and interpretability:

1. Densities need to integrate to 1 (i.e., partition function)

2. Difficult to combine timelines 0



Intensity function

density
Prob. between [t t+dt) f *( (t’H(t))
I I
I I
" I I
t1 to ts t t+ dt t=T
\ J \
| S*(t) =1 — F*(¢)
History, ’H(t) Prob. not before t
Intensity:
Probability between [t, t+dt) but not before t
) f7(t)dt
A (t)dt = @) >0 = \'(t)dt=E[dN(t)|H(t)]

Observation: A\*(t) Itisarate =# of events / unit of time 13



Advantages of intensity parametrization (l)

fr(t)  fr(t2) f7(¢

:ET TT T

N (1) A" (82) N*(£3) \*(2) exp ( / () dT>

W, 4’*(4 w, qj(tg» \ \

(w, Qb*(tz)) (w, d*(£)) exp (‘ j() (w, ¢*(T))df)

Suitable for model design and interpretable:

1. Intensities only need to be nonnegative
2. Easy to combine timelines 14



Relation between f*, F*, S*, A*

) f() ) ex
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Representation:
Temporal Point Processes

2. Basic building blocks

16



Poisson process

time

Intensity of a Poisson process

() = W
Observations:

1. Intensity independent of history

2. Uniformly random occurrence

3. Time interval follows exponential distribution Y



Fitting & sampling from a Poisson

I I
> : ® ® ® () = :
- : : » time
t1 to t3 t="T
Fitting by maximum likelihood:
p*=argmax 3logp — puT = El
1 T
Sampling using inversion sampling: Uniform(0,1)
|
1
t o~ pexp(—p(t—t;) B t=—-—log(l—u)+ts

v

fr(t) F(u) 18

t




Inhomogeneous Poisson process

5 | Siliia L

to tz e _T

Intensity of an inhomogeneous Poisson process

A*(t) = g(t) = 0 (Independent of history)

Example:
VAN o X
A% (1)

// \\ _
. J. t' '// L - \\
— Zajk(t_tj) L | "
‘7 . a— = - =




Fitting & sampling from inhomogeneous Poisson

1T TTT

t1 tyts e t="T

Fitting by maximum likelihood: mangﬂze Z log g(t / g(r
g

Sampling using thinning (reject. sampling) + inverse sampling:

1. Sample ¢t from Poisson process with intensity [
using inverse sampling

2. Generate wug ~ Uniform(0,1) }

Keep sample with

3. Keep the sampleif uz < g(%) /,u prob. g(t)/ p 20



Terminating (or survival) process

| |
| |
"~ I I
[ ! ! > time

Intensity of a terminating (or survival) process
A*(t)=g" () (1 - N(t)) =0

Observations:

1. Limited number of occurrences

21



Self-exciting (or Hawkes) process

— time
tl t2t3 ,t t:T

|
History, # (t) | N

Triggering kernel

Intensity of self-exciting [ \
(or Hawkes) process: A(t) = p+ « Ztie’H(t) Kew(t — t;)

= 1+ aky(t) * dN(t)
Observations:

1. Clustered (or bursty) occurrence of events

2. Intensity is stochastic and history dependent .



Fitting & Sampling a Hawkes process

tl t2t3 t:T

Fitting by maximum likelihood:

T ) The max. likelihood
maximize Z log )\* ) — / A (7') dr is jointly convex
0

W, in Land &

Sampling using thinning (reject. sampling) + inverse sampling:

Key idea: the maximum of the intensity Ao changes
over time



Summary

Building blocks to represent different dynamic processes:

Poisson processes: | ® |
A () = A ' | =

Inho

We know how to fit them i
and how to sample from them

Tern

AT =9 LT = IV (1)) L '

Self-exciting point processes:

M) =pta > kolt—t) '4?\f+\+\ 3

t;€H(t) ] ] 24




Representation:
Temporal Point Processes

3. Superposition

25



Total intensity
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Mutually exciting process

M~
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Mutually exciting terminating process

1
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Representation:
Temporal Point Processes

4. Marks and SDEs with jumps

29



Marked temporal point processes

Marked temporal point process:
A random process whose realization consists of discrete
marked events localized in time

- L@ 0 -~ N@t)e{0}YU ZT i
- ' |,
t1 ta 3 t t=T
z(t)] ® o !
l O t2 t3 .
time
y(1) ] o
l . " 6 { time
\ J
' 30

History, #(t)



Independent identically distributed marks

»  time

Distribution for the marks:

z*(t;) ~ p(x)
Observations:

1. Marks independent of the temporal dynamics

2. Independent identically distributed (1.1.D.)
31



Dependent marks: SDEs with jumps

time

History, H(t) <
Marks given by stochastic differential equation with jumps: l

a(t + dt)— z(t) = da(t) = f(x(t), t)dt + h(z(t), )AN (t),
| |

Observations: Drift Event influence

1. Marks dependent of the temporal dynamics

2. Defined for all values of t ¥



Dependent marks: distribution + SDE with jumps

o (1) [
Histor'y, H(t) <
Distribution for the marks: ‘l'
T*(t;) ~p(z*|z(t)) & dx(t) z‘f(x(t), t)dt,+‘h(:v(t),t)dN(t)’
Observations: D!ift Event in'fluence

1. Marks dependent on the temporal dynamics
2. Distribution represents additional source of uncertainty



Mutually exciting + marks

h 9 e -
T é ” . - » time
Christine : :
ﬂ ! ?cp C Mpeforuz®t
| i | |
t a2 t3 t t=T

Marks affected by neighbors

dz(t) = f(2(t),t)dt + g(a(t), t)dM (1)

' ' 34
Drift Neighbor influence




Marked TPPs as stochastic dynamical systems

Example: Susceptible-Infected-Susceptible (SIS)

. s - SDE Wilth jumps
g —_— 4 — e | |
Xi()=0  Xit)=1  Xi(t)=0 AXi(t) :fm'(t), C dWi(t),
Susceptible Infected Susceptible It gets It recovers
infected
<~ Node is susceptible
~ | :> < ——
nfection
b My (1)t = (1= Xi(0))B 3 enrry X5 (0)de
. _ Y
E|dYi(t)] = Ay, (t)dt If friends are infected, higher infection
rate
SDE with jumps
=0 — [0 [ : '
< = dwi(t) = §dY;(t)— Aw, (£)dWi(t) + pdNi(t)
Recovery - Y e
rate

Self-recovery rate when If node recovers, Rate increases if
E [dW;(t)] = Aw, (t)dt node gets infected  ratetozero node gets treated
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