## 

Isabel Valera

**MPI for Intelligent Systems** 

## Many discrete events in continuous time



**Online actions** 



**Financial trading** 



**Disease dynamics** 



**Mobility dynamics** 

## Variety of processes behind these events

## Events are (noisy) observations of a variety of complex dynamic processes...





Flu spreading



Article creation in Wikipedia



News spread in Twitter



Reviews and sales in Amazon



Ride-sharing requests



A user's reputation in Quora

**FAST** 

**S**LOW

...in a wide range of temporal scales. 3

## **Example I: Information propagation**



They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election

## **Example II: Knowledge creation**



## **Example III: Human learning**



## 1st year computer science student



#### Aren't these event traces just time series?



## **Outline of the Lecture**

#### INTRO TO TEMPORAL POINT PROCESSES (TPPs)

- 1. Intensity function
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

#### **APPLICATION: CLUSTERING EVENT SEQUENCES**

- 1. Problem Statement
- 2. Introduction to DPMM
- 3. CRP + HP (a.k.a. HDHP)
- 4. Generative process

# Temporal Point Processes (TPPs): Introduction

- 1. Intensity function
- 2. Basic building blocks
  - 3. Superposition
- 4. Marks and SDEs with jumps

#### Temporal point processes

#### **Temporal point process:**

A random process whose realization consists of discrete events localized in time



#### Model time as a random variable





Likelihood of a timeline:  $f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$ 

## Problems of density parametrization





It is difficult for model design and interpretability:

- Densities need to integrate to 1 (i.e., partition function)
- 2. Difficult to combine timelines

#### **Intensity function**



#### **Intensity:**

Probability between [t, t+dt) but not before t

$$\lambda^*(t)dt = \frac{f^*(t)dt}{S^*(t)} \ge 0 \implies \lambda^*(t)dt = \mathbb{E}[dN(t)|\mathcal{H}(t)]$$

Observation:  $\lambda^*(t)$  It is a rate = # of events / unit of time

#### Advantages of intensity parametrization (I)



$$\lambda^*(t_1) \lambda^*(t_2) \lambda^*(t_3) \lambda^*(t) \exp\left(-\int_0^T \lambda^*(\tau) d\tau\right)$$

$$\langle w, \phi^*(t_1) \rangle \qquad \langle w, \phi^*(t_3) \rangle \qquad \exp\left(-\int_0^T \langle w, \phi^*(\tau) \rangle d\tau\right)$$

#### Suitable for model design and interpretable:

- 1. Intensities only need to be nonnegative
- 2. Easy to combine timelines

## Relation between f\*, F\*, S\*, λ\*



## Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
  - 3. Superposition
- 4. Marks and SDEs with jumps

#### **Poisson process**



#### **Intensity of a Poisson process**

$$\lambda^*(t) = \mu$$

#### **Observations:**

- 1. Intensity independent of history
- 2. Uniformly random occurrence
- 3. Time interval follows exponential distribution

## Fitting & sampling from a Poisson



#### Fitting by maximum likelihood:

$$\mu^* = \underset{\mu}{\operatorname{argmax}} 3 \log \mu - \mu T = \frac{3}{T}$$

#### Sampling using inversion sampling:

$$t \sim \mu \exp(-\mu(t-t_3))$$
  $\Rightarrow t = -\frac{1}{\mu} \log(1-u) + t_3$ 

$$f_t^*(t)$$

Uniform(0,1)

#### Inhomogeneous Poisson process



#### Intensity of an inhomogeneous Poisson process

$$\lambda^*(t) = g(t) \geqslant 0$$
 (Independent of history)





#### Fitting & sampling from inhomogeneous Poisson



Fitting by maximum likelihood:  $\max_{g(t)} \sum_{i=1}^{n} \log g(t_i) - \int_{0}^{T} g(\tau) d\tau_i$ 

#### Sampling using thinning (reject. sampling) + inverse sampling:

- 1. Sample t from Poisson process with intensity  $\mu$  using inverse sampling
- **2.** Generate  $u_2 \sim Uniform(0,1)$
- 3. Keep the sample if  $u_2 \le g(t) / \mu$

Keep sample with prob.  $g(t)/\mu$ 

## Terminating (or survival) process



#### Intensity of a terminating (or survival) process

$$\lambda^*(t) = g^*(t)(1 - N(t)) \ge 0$$

#### **Observations:**

1. Limited number of occurrences



## Self-exciting (or Hawkes) process



 $= \mu + \alpha \kappa_{\omega}(t) \star dN(t)$ 

#### **Observations:**

- 1. Clustered (or bursty) occurrence of events
- 2. Intensity is stochastic and history dependent

## Fitting & Sampling a Hawkes process



#### Fitting by maximum likelihood:

# Sampling using thinning (reject. sampling) + inverse sampling: Simulating a Hawkes Process!

Key idea: the maximum of the intensity  $\lambda_0$  changes over time

## Summary

#### Building blocks to represent different dynamic processes:

Poisson processes:

$$\lambda^*(t) = \lambda$$

Inho

Tern

We know **how to fit** them and **how to sample** from them

$$(t) = g(t)(1 - N(t))$$

Self-exciting point processes:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$



## Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
  - 3. Superposition
- 4. Marks and SDEs with jumps

## **Total intensity**



#### Clustered occurrence affected by neighbors

$$\lambda^*(t) = \mu_b + \mu_c + \alpha \sum_{t_i \in \mathcal{H}_b(t)} \kappa_\omega(t - t_i) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_\omega(t - t_i)$$

## Mutually exciting process



#### Clustered occurrence affected by neighbors

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i) + \beta \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i)$$

## Mutually exciting terminating process



#### Clustered occurrence affected by neighbors

$$\lambda^*(t) = (1 - N(t)) \left( g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_{\omega}(t - t_i) \right)$$

## Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
  - 3. Superposition
- 4. Marks and SDEs with jumps

## Marked temporal point processes

#### Marked temporal point process:

A random process whose realization consists of discrete marked events localized in time



## Independent identically distributed marks



#### **Distribution for the marks:**

$$x^*(t_i) \sim p(x)$$

#### **Observations:**

- 1. Marks independent of the temporal dynamics
- 2. Independent identically distributed (I.I.D.)

## Dependent marks: SDEs with jumps



Marks given by stochastic differential equation with jumps:

$$x(t+dt)-x(t)=dx(t)=\underbrace{f(x(t),t)dt}_{\text{T}}+\underbrace{h(x(t),t)dN(t)}_{\text{T}}$$
 Observations: Drift Event influence

- 1. Marks dependent of the temporal dynamics
- 2. Defined for all values of t

#### Dependent marks: distribution + SDE with jumps



#### **Distribution for the marks:**

$$x^*(t_i) \sim p\left(\left.x^*\right| x(t)\right) \implies dx(t) = \underbrace{f(x(t),t)dt}_{\text{Drift}} + \underbrace{h(x(t),t)dN(t)}_{\text{Event influence}}$$

- 1. Marks dependent on the temporal dynamics
- 2. Distribution represents additional source of uncertainty

## Mutually exciting + marks



#### Marks affected by neighbors

$$dx(t) = \underbrace{f(x(t),t)dt}_{\text{Prift}} + \underbrace{g(x(t),t)dM(t)}_{\text{Neighbor influence}}$$

## Marked TPPs as stochastic dynamical systems

#### Example: Susceptible-Infected-Susceptible (SIS)



$$X_i(t) = 0$$

 $X_i(t) = 0$   $X_i(t) = 1$   $X_i(t) = 0$ 

Susceptible

Infected

Susceptible





rate

$$\mathbb{E}\left[dY_i(t)\right] = \lambda_{Y_i}(t)dt$$

Node is susceptible

$$\lambda_{Y_i}(t)dt = (1 - X_i(t))\beta \sum_{j \in \mathcal{N}(i)} X_j(t)dt$$

If friends are infected, higher infection

rate **SDE** with jumps



Recovery rate

$$\mathbb{E}\left[dW_i(t)\right] = \lambda_{W_i}(t)dt$$

$$d\lambda_{W_i}(t) = \delta dY_i(t) - \lambda_{W_i}(t)dW_i(t) + \rho dN_i(t)$$

node gets infected

Self-recovery rate when If node recovers, Rate increases if rate to zero node gets treated

## **Outline of the Lecture**

#### INTRO TO TEMPORAL POINT PROCESSES (TPPs)

- 1. Intensity function
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

#### **APPLICATION: CLUSTERING EVENT SEQUENCES**

- 1. Problem Statement
- 2. Introduction to DPMM
- 3. CRP + HP (a.k.a. HDHP)
- 4. Generative process