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CLUSTERING EVENT SEQUENCES

: 1st year computer science student
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CLUSTERING EVENT SEQUENCES

: 1st year computer science student

Content + Dynamics = Cluster (learning pattern)
E.g., + semester
+ semester
presentation + week

—



CLUSTERING EVENT SEQUENCES

Several people share same clusters

Introduction to programming

Discrete math
| Project presentation




CLUSTERING EVENT SEQUENCES

Event cluster (topic) is hidden = Clustering of events

Unknown number of clusters = Dirichlet Process
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Dirichlet Process (DP)

Dirichlet Process:
Random process whose realization consists of

probability distributions
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Dirichlet Process (DP)

Properties: K
" |nfinite-dimensional generalization of
Dirichlet distribution

7 ~ Limk_, o Dirichlet(a/K, ..., a/K)

" Prior for clustering
" Infinite model complexity = infinite #
of groups
= Partition data into groups =




Conjugacy to the multinomial

@ For the Dirichlet distribution we could integrate out 7 to get:
P(zj = klz—j) o< X2, 1(zi = k) + ax.

@ We can do something similar for the Dirichlet Process.

o Let my be the number of times we have seen x; = 6 in the (first) n
observations.

® ... or the number of times that z; = k for K™ different values (so
far).

@ The posterior over G given n observations is:
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@ So, we have




Chinese Restaurant Process (CRP)
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Chinese Restaurant Process (CRP)

bl4
bl @ o

CLUSTERING EVENT SEQUENCES:

Exchangeability:
v'Observations

v Clusters

- Each user perform a sequence of events

- Events are not exchangeable
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CRP + HP ()

For each user and cluster, we represent events as
a counting process:
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CRP + HP (Il)

Intensity for each user and cluster from a Hawkes
process:
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CRP + HP (1)

Users adopt more than one learning pattern

© Y >

t

User’s events sampled for an infinite multivariate Hawkes:

N

Time Cluster ;';71 (t)
(tn, Pn) ~ Hawkes ;

Airoo (1)

Mark — wj ~ Multinomial(6))
(content/words)



CRP + HP (IV)

Different users adopt same learning patterns

O+—+—+ 4+
0 P HH——
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Learning pattern distribution from a Dirichlet process:

- Infinite # of learning patterns.
- Shared parameters across users.
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Generative Process (l)

b14 User 1
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1. Time and user sampling:
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Generative Process (l)

User 1

b14
b1 ‘ @ Exchangeability:

b11 Ueer X Events

bs b3 v Clusters
by b

2. Task (table) assignment :
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Generative Process (l)

User 1

b14
b1 ‘ @ Exchangeability:

b11 Ueer X Events

bs b1s v Clusters
bo by

3. Learning pattern (dish) assignment:
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Generative Process (ll)

General approach to sample from BNP+HP processes:

Algorithm 1: BNP+HP: Generative process

Input: a BNP, triggering kernel]\f[uncmon v(-), N "CRP nCRP--HP
Output: {e, = (t,, Up, My, 2p)

n=1

1 forn=1...N do

2 Compute A(t) = >, Au(t|H(1)); CRP ———> CRP+HP

3 Sample t,, ~ Hawkes(\(?));

4 Sample u, ~ Cat({ Ay (tn)/A(tn) Yucus);

5 | Sample b, ~ Ber(A(t,,) /Ay, (tn)); \

6 | if b, =1 then nCRF 1 nCRF+HP
T Sample z, ~ Cat({QANR(t) /ANt HS )

3 else CRF =————> CRF-+HP

9 Sample z, ~ BNP;
10 Update H,,, (t); ——3> Temporal extension
11 if 2, = K + 1 then Hierarchical extension
12 ’ Sample parameters for the new pattern; Nested extension
13 Sample mark m,, ~ p(m,|z,);




Generative Process (ll)

Suitable for online inference (Sequential Monte Carlo):

Algorithm 2: BNP+HP: inference

Input: A sequence of events {e, = (t,, u,, 'm,n)}f}l:l, P number of particles, 6
threshold for particle resampling, triggering kernels prior I'(a,, b, ), user

intensities prior (a,,b,),m
Output: user intensities {1, }_,, triggering kernels {oy} ,, BNP-specific counts
and parameters

1 Initialize p,, ~ I'(ay, by)Vu € U, all counts to 0;

2 Tnitialize particle weights w{) = + Vpel...pP;

3 forn=1...N do

// for all particles

4 forp=1...Pdo

5 Sample pattern z,;

6 if 2, is globally new then

7 ’ Sample o, ~ I'(aq, ba);

8 Update triggering kernel prior for pattern aq, ,ba, ;
9 Compute p(my,|z1.m-1);
10 Update user intensities u, parameters Vu € 1...U;
11 Compute p(t,|u,);
12 Update 'll)ff)) = '(Ufﬁlp('m/,,,|21,,,,_1)p(t‘,,,|u,,,);
13 Update BNP-specific counts;
14 Normalize particle weights;

P 2
15 | if Y w” <0 then
p=1

16 | Resample particles using systematic resampling;




Example: Online Learning Activity

Experiments

We gathered data from stackoverflow . Over 4 years
(09/2010 — 08/2014):

learning event: user: time: content:
qguestion user who asked the time when the guestion tags
(and answers) guestion guestion was asked

1.6 million questions using 31.4k tags

O+—++ -1+
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16k users



Example: Online Learning Activity

Content Intensities
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Version control tasks tend to be specific, quickly
solved after performing few questions



Example: Online Learning Activity

Content Intensities
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Machine learning tasks tend to be more complex
and require asking more questions
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More about TTPs

TEMPORAL POINT PROCESSES (TPPs): INTRO

. Intensity function

. Basic building blocks

. Superposition

. Marks and SDEs with jumps

B WIN =

MODELS & INFERENCE

Modeling event sequences

. Clustering event sequences

. Capturing complex dynamics

. Causal reasoning on event sequences

B WN R

RL & CONTROL

1. Marked TPPs: a new setting
. Stochastic optimal control
3. Reinforcement learning

N

Slides/references: learning.mpi-sws.org/tpp-icmli18



