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Overview

1. Expectation Maximization

2. Variational Inference
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Expectation Maximization



Motivation

Probabilistic Models are often quite complex, thus inference is
often challenging or even infeasible -> thus we often
approximate solutions to the inference problem using

• sampling or

• variational

based methods.

Problem: In practical applications we do not observe
everything; on the contrary, we are often interested in
unobserved variables, which we can not measure!

Today: Learning in latent variable models using variational
inference.
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Latent Variable Model

A latent variable model is a probability distribution over
observed and unobserved variables p(x, z; θ), where as before
D = (x1, . . . , xn) ∈ Xn are our observations and K variables zi

are unobserved.

Example: Gaussian Mixture Models -> allow to model
subpopulations in the data (e.g. in Object Tracking, Speech,
etc.) The joint distribution is p(x, z) = p(x|z)p(z), where
cluster membership assignment is a random variable zi with
p(x|z = k) ∼ N (µk, σk).

p(x) =
K∑

k=1

p(x|z = k)p(z = k) =
K∑

k=1

πkN (µk, σk)
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The EM Algorithm: Maximum Likelihood Learning with
Hidden Variables

Need to maximize

log p(D) =
∑
x∈D

log p(x) =
∑
x∈D

log

(∑
z

p(x|z)p(z)
)

Problem: Only x is observed but we have parameters θ and
latent variables z

The Expectation Maximization (EM) algorithm:

• Expectation: Assign values to hidden/missing variables
i.e. compute p(z|x; θt)

• Maximization: Maximize parameter log likelihood via
θt+1 = arg maxθ

∑
x∈D Ez∼p(z|x,θt) log p(x, z, θ)

• Repeat until convergence for t = 1,2, · · · , starting with θ0
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Example: EM for Gaussian Mixtures

E-Step: p(zj|x; θt) =
p(zj,x,θt)
p(x,θt)

=
p(x|zj,θt)p(zj,θt)∑K

k=1 p(x|zk,θt)p(zk,θt)
=: ωj(x)

Interpretation: z is indicator for cluster assignment of and in
the E-step we thus calculate a membership "weight" ωj of
belonging to the j-th cluster for each data point x.

M-Step:

θt+1 = arg max
θ

∑
x∈D

Ez∼p(z|x,θt) log p(x, z, θ)

= arg max
θ

K∑
k=1

∑
x∈D

p(zk|x, θt) log p(x|zk, θ)

+
K∑

k=1

∑
x∈D

p(zk|x, θt) log p(zk, θ)

Exercise: Derive the precise equations for the M-Step.
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Illustration EM
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Summary EM

• EM is a general framework for partially observable data

• Idea of maximizing the log-likelihood given the "expected
complete" dataset.

• Various extensions: Stochastic EM, Hard EM, Neural EM

• Local optima: initialization often important

• The marginal likelihood increases after each EM cycle!

Question: Why does it work?
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Variational Inference



Motivation and Recall

• A probabilistic model is a joint distribution of hidden
variables z and observed variables x:

p(z, x)

• Inference about the unknowns is through the posterior,
the conditional distribution of the hidden variables given
the observations

p(z | x) = p(z, x)

p(x)

• For most interesting models, the denominator is not
tractable.
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Idea

X observations, Z hidden variables, θ additional parameters

p(z | x, α) = p(z, x | θ)∫
p(z, x | θ) (1)

Idea: Pick family of distributions over latent variables with its
own variational parameter

q(z | ν) = . . .?

and find variational parameters ν such that q and p are
"close".
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Variational Inference - Concept

*
Variational Inference

• VI turns inference into optimization.

• Place a variational family of distributions over latent
variables.

• Fit the variational parameters to be close (in KL)

*Figure from Blei et.al, Variational Inference Tutorial, Nips 2016
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Convexity

Definition

Let f be a real valued function defined on an interval
I = [a,b], then f is said to be convex on I if ∀x1, x2 ∈ I and
lambda ∈ [0,1], we have:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2)

A function f is concave if −f is convex.

Intuition of Convexity: The function is never above the
straight line from points (x1, f(x1)) to (x2, f(x2)).
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Jensen’s Inequality

Theorem

Let f be a convex function defined on an interval I. If
x1, x2, · · · , xn ∈ I and λ1, λ2, · · · , λn ≥ 0 with

∑n
i=1 = 1, then

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi) (3)

Proof: Induction; n=1 trivial, n=2 definition of convexity, for
n+1 (Black Board).

Exercise: − log(x) is a convex function on (0,∞).
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Derivation

Let q(z) be some probability distribution on z. Then

log p(x, θ) =

∫
q(z) log p(x, θ)dz =

=

∫
q(z) log

(
p(x, θ)p(z|x, θ)

p(z|x, θ)

)
dz

=

∫
q(z) log

(
p(x, z, θ)

p(z|x, θ)

)
dz

=

∫
q(z) log

(
p(x, z, θ)q(z)

p(z|x, θ)q(z)

)
dz

=

∫
q(z) log

(
p(x, z, θ)

q(z)

)
dz −

∫
q(z) log

(
p(z|x, θ)

q(z)

)
dz

=: ELBO(q, θ) + KL(q(z)||p(z|x, θ))

By Jensen’s inequality the KL divergence is non-negative and
thus the first term is a lower bound (so called Evidence Lower
Bound). -> What is q(z)?
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Revisiting Expectation Maximization

If p(z|x, θt) can be analytically calculated, we can substitute
q(z) := p(z|x, θt):

ELBO(q, θ) =

∫
q(z) log

(
p(x, z, θ)

q(z)

)
dz

=

∫
q(z) log p(x, z, θ)dz −

∫
q(z) log q(z)dz

=

∫
p(z|x, θt) log p(x, z, θ)dz

−
∫

p(z|x, θt) log p(z|x, θt)dz

= Q(θ, θt) +H(z|x)

The second term H(z|x) is called the entropy of z. Note: It is
just a function of θt not θ.
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Revisiting Expectation Maximization

The Expectation Maximization (EM) algorithm maximizes the
evidence lower bound

ELBO =

∫
q(z) log

(
p(x, z, θ)

q(z)

)
dz = Eq[log p(x, z, θ)− log q(z)]

(4)
instead of directly optimizing

log p(x, θ) = ELBO(q, θ) + KL(q(z)||p(z|x, θ))

Note: The KL is non-negative thus the ELBO is maximal when
q = p(z|x, θ) -> so called tight lower bound.

Recall (Exercise): p(z|x; θt) can be analytically calculated for
the Gaussian Mixture Model.

• E-Step: compute posterior p(z|x; θt) and evaluate ELBO
for q = p(z|x, θ) (tight ELBO).

• M-Step: θt+1 = arg maxθ
∫

p(z|x; θt) log p(x, z, θ)dz 15



Illustration EM
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Mean-field Variational Inference

Problem for EM: What can we do if we can not find a closed
form for p(z|x; θt)?

Idea: Choose/design variational family Q such that the
expectations are easily computable!

q(z1, · · · , zk) =
k∏

i=1

q(zi) (5)

• It does not contain the true posterior since the variables
are dependent which can now not be captured by q.

• Offers the possibility to group variables together.

17



Illustration Mean Field Approximations

not analytically tractable

analytically tractable for a 
restricted family Q
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ELBO for mean field approximation

ELBO(q, θ) =

∫
q(z) log

(
p(x, z, θ)

q(z)

)
dz

=

∫ ∏
i

q(zi) log p(x, z, θ)dz −
∑

i

∫
q(zi) log q(zi)dz

=

∫
q(zj)

∫ ∏
i6=j

q(zi) log p(x, z, θ)
∏
i6=j

dzidzj

−
∫

q(zj) log q(zj)dzj −
∑
i6=j

∫
q(zi) log q(zi)dzi

=

∫
q(zj) log

(
exp(Ei6=j log p(x, z, θ)

q(zj)

)
dzj

−
∑
i6=j

∫
q(zi) log q(zi)dzi =: −KL(qj||p̃i6=j) +H(zi6=j) + c

c normalization constant. 19



Coordinate Ascent

Again: KL-divergence is non-negative and thus the ELBO is
maximal when

q(zj) = p̃i6=j =
1

Z
Ei6=j(log p(x, z, θ)) (6)

Finally, once again:

• E-Step: ∀j evaluate q?(zj) =
1
ZEi6=j(log p(x, z, θ)) and set

qt+1 =
∏

i q
?
i

• M-Step:Find θt+1 = arg maxθ ELBO(q
t+1, θ)
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Example Bayesian Mixture of Gaussians

Exercise: Gaussian Mixture Model with Dirichlet prior on the
weights.
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Summary

• Choose variational family q

• Derive the ELBO

• Coordinate ascent of each qi

• Repeat until convergence

Deterministic and fast (unlike MCMC), often works well in
practice, multiple (parallel) initializations needed (local
minima), the ELBO is not always "easy" to derive (Exercise).

Key idea: Bounding by convexity!
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Next week & Open Master’s thesis topics

Open master’s thesis topics

• MuJoCo Simulator for a Robotic Platform

• Online Outlier Detection

• Sleep Classification

Plan for next week

• Black Box Variational Inference

• Stochastic Variational Inference

• Belief Propagation and Expectation Propagation

23



Questions?
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