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1. Variational Inference - Recall

2. α-Divergence
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Variational Inference - Recall



Recall

• A probabilistic model is a joint distribution of hidden
variables z and observed variables x:

p(z, x)

• Inference about the unknowns is through the posterior,
the conditional distribution of the hidden variables given
the observations

p(z | x) =
p(z, x)

p(x)

• For most interesting models, the denominator is not
tractable.
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Idea

X observations, Z hidden variables, θ additional parameters

p(z | x, θ) =
p(z, x | θ)∫
p(z, x | θ)

(1)

Idea: Pick family of distributions over latent variables with its
own variational parameter

q(z | ν) = . . .?

and find variational parameters ν such that q and p are
"close".
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Variational Inference - Overview

*
Variational Inference

• VI turns inference into optimization.

• Place a variational family of distributions over latent
variables.

• Fit the variational parameters to be close (in KL)

*Figure from Blei et.al, Variational Inference Tutorial, Nips 2016
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Illustration Mean Field Approximations

not analytically tractable
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restricted family Q

L Q ( t ) (θ)82

log p(θ, X )83

References84

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner85

di�erential equations with gaussian processes,”86

no. 429-443, 2008.87

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive88

gradient matching with gaussian processes,”89

state variables appear in quadratic form in equation6. ODE’s such as the Lotka-Volterra system
full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.

D KL Q ( i− 1) (X ) p(θ, X | Y , φ , γ )

L Q ( t ) (θ)

log p(θ, X | Y , φ , γ )dX

θ̂
( i− 1)

References
B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner

di�erential equations with gaussian processes,”Neural Information Processing Systems
no. 429-443, 2008.

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive

θ̂
( i+1)

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

di�erential equations with gaussian processes,”87

no. 429-443, 2008.88

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive89

gradient matching with gaussian processes,”AISTATS90

L Q ( t ) (θ)82

log p(θ, X | Y , φ , γ )dX83

θ̂
( i )

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

di�erential equations with gaussian processes,”87

no. 429-443, 2008.88

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive89

gradient matching with gaussian processes,”AISTATS90

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

D KL Q ( i− 1) (X ) p(θ, X | Y , φ , γ )81

L Q ( i ) (θ)82

log p(θ, X | Y , φ , γ )dX83

θ̂
( i )

84

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

D KL Q ( i− 1) (X ) p(θ, X | Y , φ , γ )81

L Q ( i − 1) (θ)82

log p(θ, X | Y , φ , γ )dX83

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

D KL Q ( i− 1) (X ) p(θ, X | Y , φ81

L Q ( i +1) (θ)82

log p(θ, X | Y , φ , γ )dX83

θ̂
( i )

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

M-step

E-step

5



Concept

KL[q(z) || p(z | x)] = Eq

[
log

q(Z)

p(Z | x)

]
= Eq[log q(Z)]− Eq[log p(Z | x)]

= Eq[log q(Z)]− Eq[log p(Z, x)] + log p(x)

= − (Eq[log p(Z, x)]− Eq[log q(Z)]) + log p(x)

Note: We can not calculate KL[q(z) || p(z | x)], since we do
not know p(z | x) but we can see that maximizing ELBO is
equivalent to minimizing the KL divergence between the
posteriors.
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Summary

log p(x, θ) = ELBO(q, θ) + KL(q(z)||p(z|x, θ)),

where:

ELBO(q, θ) =

∫
q(z) log

(
p(x, z, θ)q(z)

p(z|x, θ)q(z)

)
dz

KL(q(z)||p(z|x, θ)) =

∫
q(z) log

(
p(z|x, θ)

q(z)

)
dz
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Kullback-Leibler Divergence

Properties

• KL(q||p) ≥ 0, ∀q,p
• KL(q||p)0 if and only if q = p

Note: KL(q||p) 6= KL(p||q) i.e. the KL is not a distance but a
so called divergence.

If we use KL(q||p) we have the following characteristics of the
divergence:

• If q == p: distributions are equal.

• If q is high and p is high -> captures what we want!

• If q is high but p is low -> problematic

• If q is low, then the Expectation is zero.

Question: Why do we choose KL(q||p) over KL(p||q) ?
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Exponential Families

The exponential family of distributions over x, given
parameters η, is defined to be the set of distribution of the
form

p(x|η) = h(x)g(η) exp(ηᵀu(x)) (2)

where:

• η are the so called natural parameters

• g(η) can be interpreted as a normalization i.e. ensuring
g(η)

∫
h(x) exp(ηᵀu(x))dx = 1

Example: Many! e.g. Bernoulli p(x|µ) = µx(1− µ)1−x
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Maximum Likelihood for Exponential Family

Taking the gradient of the normalization condition on both
sides:

∇g(η)

∫
h(x) exp(ηᵀu(x))dx+g(η)

∫
h(x) exp(ηᵀu(x))u(x)dx = 0

Rearranging and using normalization condition:

− 1

g(η)
∇g(η) = g(η)

∫
h(x) exp(ηᵀu(x))u(x)dx = E[u(x)]

Summarizing:
−∇ log g(η) = E[u(x)]
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Exponential Families Continued

In case of set of iid. data X = {x1, · · · ,xn} we have the
likelihood as:

p(X|η) =

(
N∏

n=1

h(xn)

)
g(η)N exp

(
ηᵀ

N∑
n=1

u(xn)

)
(3)

Thus from previous slide:

−∇ log g(ηML) =
1

N

N∑
n=1

u(xn) (4)

Note: Solution for ML estimator depends only on data through∑N
n=1 u(xn); so called sufficient statistic since it is enough to

store the sufficient statistic instead of the whole data!

Example: For Bernoulli u(x) = x and we store only the sum of
all data points but not all data itself.
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Expectation Propagation

Instead of minimizing with respect to KL(q||p) we minimize
wrt. KL(p||q).

Assume q is a member of the exponential family i.e.:

q(x|η) = h(x)g(η) exp(ηᵀu(x))

Then

KL(p||q)(η) = − log g(η)− ηᵀEp(z)[u(z)] + const.

Minimize KL by setting gradient to zero:

−∇g(η)! = Ep(z)[u(z)]

from previous slide −∇ log g(η) = E[u(x)], we can then
conclude

Eq(z)[u(z)] = Ep(z)[u(z)] 12



Expectation Propagation - Moment Matching

Previous slide:
Eq(z)[u(z)] = Ep(z)[u(z)]

Note: Optimal solutions implies matching of expected
sufficient statistics!

Example: If q(z) is Gaussian N (z|µ,Σ), then we minimize the
KL by setting µ equal to mean of p(z) and Σ equal to
covariance of p (so called moment matching).
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Expectation Propagation - Factorized posteriors

Instead of minimizing with respect to KL(q||p) we minimize
wrt. KL(p||q).

Problem: Optimizing KL(q||p) requires computing
expectations wrt. q, while KL(p||q) requires expectations wrt.
p, which is typically intractable.

Assume the case where the true distribution p factorizes in a
product of factors p(D, θ) =

∏N
i=1 fi(θ)!

Assume q is from exponential family and factorized
q(θ) = 1

ZEP

∏N
n=1 f̃i(θ)

Then our aim is to minimize

KL

(
1

p(D)

N∏
n=1

fn(θ)|| 1

ZEP

N∏
n=1

f̃n(θ)

)
(5)
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Expectation Propagation - Factorized posteriors

Our aim is to minimize

KL

(
1

p(D)

N∏
n=1

fn(θ)|| 1

ZEP

N∏
n=1

f̃n(θ)

)
(6)

Problem: In general intractable!

Idea: Update single factors iteratively and if the factors
belong to the exponential family this can simply be done by
moment matching!
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Expectation Propagation Algorithm

Algorithm 1 Minimizing KL(p||q) for factorized distributions

1: Input:
Initialisations of approximations f̃i(·)

2:3: Until Convergence:
4: for each factor i do
5: Delete factor i from approximation

q\i =
q(θ)

f̃i(θ)
=
∏
n 6=i

f̃n(θ)

6: Projection f̃newi = arg minf ′i
KL
(
fi(θ)q\i(θ)||f ′i (θ)q\i(θ)

)
7: Update q = f̃newi (θ)q\i(θ)

8: end for
9: Return: After convergence one has p(D) ≈

∫ ∏
n f̃n(θ)dθ
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Expectation Propagation - Summary

• The reversed KL is harder to optimized. If the true
posterior p factorizes, then we can update single factors
iteratively by moment matching.

• Factors are in the exponential family.

• There is no guarantee that the iterations will converge
(compare with last lecture).

• Restriction to exponential family in EP implies: Any
product and any division between distributions stays in
parametric family and can be done analytically.

• Main applications involve Gaussian Processes (less well
suited for GMM).

Note: Both KL can be embedded into a wider framework of α-
divergences.
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α-Divergence



α-Divergence

Dα(p||q) =

∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−α

α(1− α)
dx (7)

with α ∈ (−∞,∞).

Properties:

• Dα(p||q) is convex with respect to both q and p.

• Dα(p||q) ≥ 0

• Dα(p||q) = 0 when q = p
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α-Divergence Special cases

Dα(p||q) =

∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−α

α(1− α)
dx (8)

with α ∈ (−∞,∞).

Special cases

• limα→0 Dα(p||q) = KL(q||p)

• limα→1 Dα(p||q) = KL(p||q)

• D−1(p||q) = 1
2

∫ (q(x)−p(x))2

p(x) dx

• D2(p||q) = 1
2

∫ (q(x)−p(x))2

q(x) dx

• D 1
2
(p||q) = 2

∫ (√
p(x)−

√
q(x)

)2
dx
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Illustration - Intuition for different α

Dα(p||q) =

∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−α

α(1− α)
dx (9)

To understand how the choice of α might affect the result of
approximate inference, consider the problem of
approximating a complicated distribution p with a tractable
Gaussian distribution q by minimizing Dα[p||q].

• α is large positive number: q covers all modes of p
• α is large negative number: q covers mode with highest

probability mass
• Optimal α hard to choose, probably depending on

learning task.

Example: If the true distribution p has many modes, a global
approximation might be bad by placing substantial probability
mass in the area where the true posterior does not. 20



Visual interpretation of α

Gaussian q approximating two mode Gaussian p.

If the goal is to compute marginal distributions, using a
fully-factorized approximation, then the best choice (among
α-divergences) is inclusive KL (α = 1), because it is the only α
which strives to preserve the marginals *

*Picture and Quote from: Thomas Minka, Divergence measures and
message passing, Technical report 2005.
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Explanation of "Mode"-seeking

Take again Gaussian q approximating two mode Gaussian p
from before:

For D−1(p||q) = 1
2

∫ (q(x)−p(x))2

p(x) dx i.e. α = −1, a small p(x)

forces the optimal q to be small, too ( zero-forcing ) i.e.
false-positives are avoided under the cost of excluding some
parts of p. The cost of excluding an x i.e. setting q(x) := 0 is
equal to p(x)

1−α ; Thus q will seek area of largest total mass
(mode-seeking).

Problem: Underestimating the variance for α << 0
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Inclusive v.s Exclusive

Take again Gaussian q approximating two mode Gaussian p
from before:

For α ≥ 1 it requires that q > 0 whenever p > 0 i.e. avoiding
"false-negatives". The divergence is inclusive since it prefers
to stretch across p.
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Next week

Plan for next week

• So far: Scaling with variables but not data.

• Stochastic and Black Box Variational Inference

• Summary Variational Inference
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Questions?

24


	Variational Inference - Recall
	-Divergence

