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1. Variational Inference - Recall

2. a-Divergence



Variational Inference - Recall



e A probabilistic model is a joint distribution of hidden
variables z and observed variables x:

p(z,x)

e Inference about the unknowns is through the posterior,
the conditional distribution of the hidden variables given
the observations

¢ For most interesting models, the denominator is not
tractable.



X observations, Z hidden variables, 0 additional parameters

Idea: Pick family of distributions over latent variables with its
own variational parameter

q(z|v)=..7

and find variational parameters v such that g and p are
"close".



Variational Inference - Overview

p(a[x) |

KL(g(z; v*) || p(z]x))

*

Variational Inference
e VI turns inference into optimization.

e Place a variational family of distributions over latent
variables.

* Fit the variational parameters to be close (in KL)

*Figure from Blei et.al, Variational Inference Tutorial, Nips 2016 4



Illustration Mean Field Approximations
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KL[9(2) || p(z | x)] = Eq ['09 p(qz(z|)x)]

= Eqllog q(2)] — Eq[log p(Z | X)]
= [Eq4[log q(Z)] — Eq[log p(Z, x)] + log p(x)
= — (Eq[log p(Z, x)] — Eq[log q(2)]) + log p(x)

Note: We can not calculate KL[q(2) || p(z | x)], since we do
not know p(z | x) but we can see that maximizing ELBO is
equivalent to minimizing the KL divergence between the
posteriors.



log p(x, §) = ELBO(q, 0) + KL(q(2)||p(z|x,0)),

where:

ELBO(C],G) = /CI(Z) log <Z(();| Z??))Z((ji) dz
KLa(2)lplelx.0) = [ a@)ion (PE57) ez



Kullback-Leibler Divergence

Properties

* KL(q|lp) = 0,vq,p
* KL(q||p)0ifandonly ifg=p

Note: KL(q||p) # KL(p||q) i.e. the KL is not a distance but a
so called divergence.

If we use KL(qg||p) we have the following characteristics of the
divergence:

* If g == p: distributions are equal.

e If g is high and p is high -> captures what we want!
e If g is high but p is low -> problematic

e If g is low, then the Expectation is zero.

Question: Why do we choose KL(q||p) over KL(p||q) ?



Exponential Families

The exponential family of distributions over x, given
parameters 7, is defined to be the set of distribution of the
form

p(x|n) = h(x)g(n) exp(nTu(x)) (2)
where:

e n are the so called natural parameters

. g( ) can be interpreted as a normalization i.e. ensuring
n) [ h(x)exp(nTu(x))dx = 1

Example: Many! e.g. Bernoulli p(x|u) = p*(1 — p)* =~



Maximum Likelihood for Exponential Family

Taking the gradient of the normalization condition on both
sides:

Va(n) [ () exp(imu(x))dxg(n) [ hix) explau(x)u(x)ax = 0

Rearranging and using normalization condition:

1

_mw(n) =9(n) / h(x) exp(nTu(x))u(x)dx = E[u(x)]

Summarizing:
~Vlog g(n) = E[u(x)]

10



Exponential Families Continued

In case of set of iid. data X = {x3,--- ,X,} we have the
likelihood as:

N
p(X|n) = (H h(xn ) Nexp (nT Z u(xn)> (3)
n=1

Thus from previous slide:
1 N
~VlIogg(mu) = . > u(xn) (4)

n=1

Note: Solution for ML estimator depends only on data through
SN u(x,); so called sufficient statistic since it is enough to
store the sufficient statistic instead of the whole data!

Example: For Bernoulli u(x) = x and we store only the sum of

all data points but not all data itself. 1



Expectation Propagation

Instead of minimizing with respect to KL(qg||p) we minimize
wrt. KL(p||q).

Assume g is a member of the exponential family i.e.:

q(x|n) = h(x)g(n) exp(nTu(x))
Then
KL(pllq)(n) = —logg(n) — n"Ep(z)[u(z)] + const.

Minimize KL by setting gradient to zero:
=Vg(n)! = Ep(z)[u(z)]

from previous slide —V log g(n) = E[u(x)], we can then
conclude

Eq(z)[u(z)] = Ep;)[u(z)] 12



Expectation Propagation - Moment Matching

Previous slide:

Eq(z)[u(z)] = Ep(z)[u(2)]
Note: Optimal solutions implies matching of expected
sufficient statistics!

Example: If g(z) is Gaussian N (z|u, X), then we minimize the
KL by setting 1 equal to mean of p(z) and X equal to
covariance of p (so called moment matching).

13



Expectation Propagation - Factorized posteriors

Instead of minimizing with respect to KL(qg||p) we minimize
wrt. KL(p||q).

Problem: Optimizing KL(q||p) requires computing
expectations wrt. g, while KL(p||q) requires expectations wrt.
p, which is typically intractable.

Assume the case where the true distribution p factorizes in a
product of factors p(D, ) = Hf\’zl fi(0)!

Assume q is from exponential family and factorized

q(0) = 7 [Th-1 ()

Then our aim is to minimize

1 L 1 M
KL (mﬂf““”mﬂf““) (5)
14



Expectation Propagation - Factorized posteriors

Our aim is to minimize

1 1
KL —= [[f0)=— ] f.(¢ (6)
Problem: In general intractable!

Idea: Update single factors iteratively and if the factors
belong to the exponential family this can simply be done by
moment matching!

15



Expectation Propagation Algorithm

Algorithm 1 Minimizing KL(p||q) for factorized distributions

1: Input:
Initialisations of approximations f;(-)

»

: Until Convergence:
. for each factori do
5: Delete factor i from approximation

Vo 9O 1770
? e PO

N

Projection f*" = arg ming KL (F(0)g\ ()| (6)q\ (0))
Update g = 7¥(6)q\/(6)

end for

: Return: After convergence one has p(D) ~ [ ], f.(0)d0

©oN o
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Expectation Propagation - Summary

e The reversed KL is harder to optimized. If the true
posterior p factorizes, then we can update single factors
iteratively by moment matching.

e Factors are in the exponential family.

e There is no guarantee that the iterations will converge
(compare with last lecture).

e Restriction to exponential family in EP implies: Any
product and any division between distributions stays in
parametric family and can be done analytically.

* Main applications involve Gaussian Processes (less well
suited for GMM).

Note: Both KL can be embedded into a wider framework of a-
divergences.

17



a-Divergence




a-Divergence

Do (pllg) = LX)+ (1 —;E)lq(_X)a)— P

with o € (—o00, 00).
Properties:

* D, (pl||q) is convex with respect to both q and p.
* Da(pllg) = O
* Do(pllg) =0whenqg=p

18



a-Divergence Special cases

J ap(x) + (1 — a)q(x) — p(x)*q(x)!

PR dx  (8)

Da(pllq) =

with a € (—o0, 00).

Special cases

lima—o0 Da(pllg) = KL(ql|p)
lima—1Da(pllg) = KL(pl|q)
a(plla) = f%dx

D> (pllq) = f p(x dx

%pl\q—ZI(F F)

19



lllustration - Intuition for different o

[ ap(x) + (1 — a)q(x) — p(x)*q(x)'
a(l —a)

To understand how the choice of a might affect the result of
approximate inference, consider the problem of
approximating a complicated distribution p with a tractable
Gaussian distribution g by minimizing D, [p||q].

Da(plla) =

dx (9)

* « is large positive number: q covers all modes of p

* «is large negative number: g covers mode with highest
probability mass

¢ Optimal o hard to choose, probably depending on
learning task.

Example: If the true distribution p has many modes, a global
approximation might be bad by placing substantial probability
mass in the area where the true posterior does not. 20



Visual interpretation of o

Gaussian g approximating two mode Gaussian p.
o= —00 a=0 a=05 a=1 a =00

If the goal is to compute marginal distributions, using a
fully-factorized approximation, then the best choice (among
a-divergences) is inclusive KL (o = 1), because it is the only «
which strives to preserve the marginals *

*Picture and Quote from: Thomas Minka, Divergence measures and
message passing, Technical report 2005.
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Explanation of "Mode"-seeking

Take again Gaussian g approximating two mode Gaussian p
from before:

Al Ins Ine I A

a=—0

ForD_1(pllg) =3 [ q(Xp()lf(x) dxi.e a=-1, asmallp( )
forces the optimal g to be small, too ( zero-forcing ) i.e.
false-positives are avoided under the cost of excluding some
parts of p. The cost of excluding an x i.e. setting q(x) := 0 is
equal to ( ) ; Thus g will seek area of largest total mass

(mode- seekmg)
Problem: Underestimating the variance for a << 0

22



Take again Gaussian g approximating two mode Gaussian p
from before:

p p p p 3
a=—00 a=0 a=05 a=1 a =00

For a > 1 it requires that g > 0 whenever p > 0 i.e. avoiding
"false-negatives". The divergence is inclusive since it prefers
to stretch across p.

23



Plan for next week

e So far: Scaling with variables but not data.
e Stochastic and Black Box Variational Inference

e Summary Variational Inference

24



Questions?
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