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Repetition



X observations, Z hidden variables, « additional parameters

Idea: Pick family of distributions over latent variables with its
own variational parameter

q(z|v)=..7

and find variational parameters v such that g and p are
"close".



Mean-field

Assumes that each variable is independent:

q(z1,- ,zk) = H a(z) (2)

¢ It does not contain the true posterior since the variables
are dependent which can now not be captured by q.

e Offers the possibility to group variables together.
* Use coordinate ascent updates for each q(zx).

¢ Here we only specified factorization but not the form of
the g(zx).



Using Jensen’s inequality to obtain a lower bound

log p(x) = log /Zp(z, X) =

> Eq4 (logp(x,Z2)) — Eq (log q(2))

Proposal: Choose/design variational family Q such that the
expectations are easily computable.



Relation with KL

KL[g(2) || p(z | y)] = Eq ['Og (q(ZI)Y)]

= Eq[log q(Z)] — Eq[logp(Z | y)]
= Eq4[log q(Z)] — Eq[log p(Z,y)] + log p(y)
— (Eq[log p(Z, )] — Eq[log q(2)]) + log p(y)

Difference between KL and ELBO is precisely the log
normalizer, which does not depend on g and is bounded by
the ELBO.



a-Divergence



a-Divergence

D (pllq) = L PRI 000 “POIGCTE gy
with a € (—o0, 00).
Properties:
* D, (pl||q) is convex with respect to both q and p.
* Da(pllq) = 0

* Da(pllqg) =0wheng=p
* lima—0Da(pl|q) = KL(ql|p)
lima—1 Da(pllq) = KL(p||q)



Take again Gaussian g approximating two mode Gaussian p
from before:

* For a > 1: inclusive since it prefers to stretch across p.

e For a < 0: exclusive, g seeks area of largest total mass,
mode seeking.



Expectation Propagation

Instead of minimizing with respect to KL(qg||p) we minimize
wrt. KL(p||q).

Assume g is a member of the exponential family i.e.:

q(x|n) = h(x)g(n) exp(nTu(x))
Then
KL(pllq)(n) = —logg(n) — n"Ep(z)[u(z)] + const.

Minimize KL by setting gradient to zero:
=Vg(n)! = Ep(z)[u(z)]

from previous slide —V log g(n) = E[u(x)], we can then
conclude (moment matching)

Eq(z)[u(2)] = Ep(z)[u(2)] 8



Expectation Propagation - Summary

¢ The reversed KL is harder to optimized. If the true
posterior p factorizes, then we can update single factors
iteratively by moment matching.

¢ Factors are in the exponential family.
e There is no guarantee that the iterations will converge.
* Expectation Propagation aims to preserve the marginals!

e Restriction to exponential family in EP implies: Any
product and any division between distributions stays in
parametric family and can be done analytically.

* Main applications involve Gaussian Processes and logistic
regression (less well suited for GMM).



Variational Inference



We use variational inference to approximate the posterior
distribution

log p(x,0) = ELBO(q, 0) + KL(q(2)||p(z|x, 0)),

log p(x, 0) > Eq4[log p(Z, x)] — Eq[log q(Z)]

To optimize the lower bound, we can use coordinate ascent!

Problems:

* |In each iteration we go over all the data!
¢ Computing the gradient of the expectations above.
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Coordinate Ascent

Given the independence assumption, we can decompose the
ELBO as a function of individual g(z):

ELBOj = /Q(Zj)E,';éj |Og p(Zj’Z_j, X, e)de — /Q(Zj) |Og Q(Zj)de

dELBO __
da(z)

Exercise (Lagrange multipliers):

Optimality condition

q"(zj) < expE_j[log p(z|Z;, x)]

Coordinate Ascent: Iteratively update each g(z.).
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Conditionals

Last slide: g*(z) < exp E_j[log p(z;|Z_;, x)]
Assume conditional is in the exponential family i.e.
p(zj|z-j,x) = h(z;) exp (n(z-j, x)t(z) — a(n(z—, X)))
Note: We will see examples in the following Lectures!
Mean-field for exponential family
e Compute log of the conditional
log p(zj|z—j, x) = log(h(z))) + n(z—j, x)"t(z;) — a(n(z-, X))
+ Compute expectation with respect to q(z_)
Ellog p(zjlz_;, x)] = log(h(z)) + Eln(z—. x)T]t(z) — E[a(n(z;. x))]
+ Thus q*(2)) o h(z;) exp(Eln(z_;, x)T]t(z)
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Conditionals

Note: In the case of an exponential family, the optimal g(z) is
in the same family as the conditional.

Coordinate Ascent

e Assuming variational parameter v.

k

q(z1, - zlv) = HCI(ZI\V:') (4)

i=1

¢ Then each natural variational parameter is set equal to
the expectation of the natural conditional parameter
given all the other variables and the observations:

v = E[n(z-,x)] (5)
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Exponential Families




Exponential Families

The exponential family of distributions over x, given
parameters 7, is defined to be the set of distribution of the
form

p(x|n) = h(x) exp(nTt(x) — a(n)) (6)
where:

* 7 are the so called natural parameters
t(x) sufficient statistic

* a(n) log normalizer

E[t(x)] = &a(n)

e Higher moments are next derivatives.

Examples: Bernoulli (last week), Gaussian, Binomial,
Multinomial, Poisson, Dirichlet, Beta, Gamma etc.
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Conjugacy

Bayesian modeling allows to incorporate priors:

xi ~ G(-|n), forie{l,---,n}

The posterior distribution of i given the data x;., is then given
by

n

p(nlx, ) o< F(nA) [T G(xiln)
i=1

We say F and G are conjugate if the above posterior belongs
to the same functional family as F.
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Conjugate prior for the Exponential Family

Exponential family members have a conjugate prior:

p(xiln) = hi(x) exp(nTt(x) — ai(n))
p(nIA) = he(x) exp(Ain + Ay (—ai(n)) — ac(N))

* The natural parameter A = (A1, \2) has dimension
dim(n) +1
« The sufficient statistics are (1, —a(n))

Exercise: Show the above result.
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Conditional conjugacy

Let 5 be a vector of global latent variables (with
corresponding global parameters a and z be a vector of local
latent variables:

n

p(8,z.x) = p(B) [ [ p(z:. xil B)

i=1

Note: For stochastic variational inference, we make an
additional assumption:

p(zi, xi|3) = h(zi, x;) exp(BTt(z;, x;) — a(3))

and take an exponential prior on the global variables as the
corresponding conjugate prior:
pa(B) = h(B) exp(aT[B, —a(B)] — a(a)) with a = (a1, a2).
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Mean-field for conjugates

Mean-field: g(z, ) = q,(8) [1; 4, (2)

¢ ) global variational parameter

* ¢ local variational parameter

Local update ¢; < Ex[n(5, xi)]
Global update: \ «— E,[ny(x, z)]

Note: Coordinate ascent iterates between local and global
updates.
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Algorithm 1 Mean-field with conjugate family assumption

1: Input:
model p, variational family g, (2), , ()

2: while ELBO is not converged do
4 for each data pointi do
5: Update ¢; + Ex[m(5,xi)]
6 end for

7 Update A < E,[ng(x,z)]

8: end while
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Stochastic Variational
Inference




Gradient Optimization

Atr1 = At + (Sv,\f()\t)
or equally
argmaxf(A+d)) st. [[dA|]? < e (7)

Problem: Here it is the euclidean distance, which is not
suitable for probability distributions.

Natural Gradient for ELBO:

arg max ELBO(A +d)) st. DR (qx, Gatan) <€ (8)

sym

where Dy (g, p) = KL(q||p) + KL(p||q)
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Gradient Optimization

Riemannian metric G(\) sucht that:

dATG(A)dX = D™ (ax(B), garar(B))

From information geometry, we know how to calculate the
natural gradient:

V,ELBO = G 1(\)V,ELBO

where
G(\) = E[(Vxlog ga(58))(Valogga(8))T] (9)
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Gradient Optimization for conjugate models

For our model class, we have:

Thus

Recall

then

Valogaga(B) = t(8) — E[t(B)]

G(\) = V3a())

V,ELBO = V2a(\)(E[5(x,2)] — \)

V,ELBO

“}(\)V,ELBO
THA)VRa(N)(El(x, 2)] - A)
(E[n(x,2)] = A)

G
G

(10)
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Gradient Step

In each iteration
At = Aeo1 + (51:V>\FIELBO

where d; is the step size.

Then substituting the above

)\t = (1 - 5t)/\t—1 + 5tE[77(X7 Z)]
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Algorithm 2 Mean-field with natural gradient

1: Input:
model p, variational family g, (2), , ()

2: while ELBO is not converged do
4 for each data pointi do
5: Update ¢; + Ex[m(5,xi)]
6 end for
7: Update A <~ A + §V,ELBO = (1 — )X + 6Eq(y)[ng(x. 2)]
8: end while
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Stochastic Optimization

Idea: Maximize a function f using noisy gradients H of that
function.

* Noisy gradient H: E[H] = Vf
e Step size ¢

® Xtg1 < Xt + 5tH(Xt)

Convergence to a local optimum is guaranteed, when:

[e.9]
Z(St = o
t=1
o
253 < 00
t=1
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Stochastic Gradient Step

Recall
VAELBO = (E[5(x,2)] — A)
n
= (041 + ZEq[t(ZhXi)], n—+ az) - A
i=1
Idea: Construct a noisy natural gradient by sampling
* Sample index j ~ Uniform(1,---,n)
* Rescale
VAELBO = (Efn(x\",z")] - \)
= (Oé]_ + nEq[t(zj,xj)], 1+ Oéz) — A
= A=A

~

Summary gradient step A\ = (1 — d¢)At—1 + Ot A
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Algorithm 3 Mean-field with stochastic gradient

1: Input:
model p, variational family q,(z), , gx(5)

2: while Stopping criteria is not fulfilled do

4 Sample index j ~ Uniform(1,--- ,n)

5. Update g; < Ex[n(8. x)] R

6:  Compute global parameter estimate A = E[1y(X;, Z)]

7 Optimize the global variational parameter Aty1 < Ae(1 — 0¢) + 6&
8: Check step size and update if required!
9: end while
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Black Box Variational
Inference




Gradient Estimates of the ELBO

ELBO = Eq, [log pg(z,x)] — Eq[log q.(2)]

where v are the parameters of the variational distribution and
f the parameters of the model (as before).
Aim: Maximize the ELBO

Problem: Need unbiased estimates of V, yELBO.
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Reparametrization trick *

Simplified notation:

VyEq, [f.(2)]
Assume that there exists a fixed reparameterization such that

Eq, [1,(2)] = Eqlf. (94(c))]

where the expectation on the right does now not depend on v.
Then

Vi Eq[fo(9(€))] = Eq[V. 1 (9u(€))]

Solution: Obtain unbiased estimates by taking a Monte Carlo

estimate of the expectation on the right.

“Will be covered later
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Optimizing the ELBO

Eqn[log p(z, x) — log (2)] =: E[g(2)]

Exercise:
V,ELBO = V,E[g(2)] = E[g(2)V log q(z)] + E[Vg(2)]

where Vlog q(z) is called the score function.

Note: The expectation of the score function is zero for any q
i.e.

Eq[V10gq(z)] = 0

Thus, to compute a noisy gradient of the ELBO

» sample from q(z)
* evaluate Vlogq(z)
* evaluate log p(x, z) and log q(z)
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Algorithm 4 Black Box Variational Inference

1: Input: data x, model p(x,z), variational family g,(z),

2: while Stopping criteria is not fulfilled do

3:  Draw L samples z ~ q,(2)

4 Update variational paramater using the collected samples

L
1
p 49+ 0c; Y Viogq(z)(logp(x. 27) ~ logq(z))
=1

5: Check step size and update if required!
6: end while

Note: Active research area (problem) is the reduction of the
variance of the noisy gradient estimator.
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What we have seen

¢ Expectation Maximization

¢ Introduced KL to understand convergence of EM.

* «- Divergence as a more general concept, including
Expectation Propagation

» Scalable Stochastic Variational Inference for conjugates in
the exponential family

* black box variational inference to overcome exponential
family assumption

What is not covered

¢ Problem for black box is the variance of the noisy gradient
¢ Extensions black box a-Divergence
* Online inference algorithms
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Plan for next week

e Originally planned: Bayesian Non-parametrics
e Most likely: State Space Models
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Questions?
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