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Repetition



Framework

x observations, Z hidden variables, α additional parameters

p(z | x, α) = p(z, x | α)∫
p(z, x | α)

(1)

Idea: Pick family of distributions over latent variables with its
own variational parameter

q(z | ν) = . . .?

and find variational parameters ν such that q and p are
"close".
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Mean-field

Assumes that each variable is independent:

q(z1, · · · , zk) =
k∏

i=1

q(zi) (2)

• It does not contain the true posterior since the variables
are dependent which can now not be captured by q.

• Offers the possibility to group variables together.

• Use coordinate ascent updates for each q(zk).

• Here we only specified factorization but not the form of
the q(zk).

3



Using Jensen’s inequality to obtain a lower bound

logp(x) = log

∫
Z
p(z, x) =

= log

∫
Z
p(z, x)

q(z)

q(z)

= logEq

(
p(x,Z)

q(Z)

)
≥ Eq (logp(x,Z))− Eq (logq(Z))

Proposal: Choose/design variational family Q such that the
expectations are easily computable.
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Relation with KL

KL[q(z) || p(z | y)] = Eq

[
log

q(Z)

p(Z | y)

]
= Eq[logq(Z)]− Eq[logp(Z | y)]
= Eq[logq(Z)]− Eq[logp(Z, y)] + logp(y)

= − (Eq[logp(Z, y)]− Eq[logq(Z)]) + logp(y)

Difference between KL and ELBO is precisely the log
normalizer, which does not depend on q and is bounded by
the ELBO.
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α-Divergence



α-Divergence

Dα(p||q) =
∫
αp(x) + (1− α)q(x)− p(x)αq(x)1−α

α(1− α)
dx (3)

with α ∈ (−∞,∞).

Properties:

• Dα(p||q) is convex with respect to both q and p.

• Dα(p||q) ≥ 0

• Dα(p||q) = 0 when q = p

• limα→0 Dα(p||q) = KL(q||p)
• limα→1 Dα(p||q) = KL(p||q)

6



Inclusive v.s Exclusive

Take again Gaussian q approximating two mode Gaussian p
from before:

• For α ≥ 1: inclusive since it prefers to stretch across p.

• For α ≤ 0: exclusive, q seeks area of largest total mass,
mode seeking.
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Expectation Propagation

Instead of minimizing with respect to KL(q||p) we minimize
wrt. KL(p||q).

Assume q is a member of the exponential family i.e.:

q(x|η) = h(x)g(η) exp(ηᵀu(x))

Then

KL(p||q)(η) = − logg(η)− ηᵀEp(z)[u(z)] + const.

Minimize KL by setting gradient to zero:

−∇g(η)! = Ep(z)[u(z)]

from previous slide −∇ logg(η) = E[u(x)], we can then
conclude (moment matching)

Eq(z)[u(z)] = Ep(z)[u(z)] 8



Expectation Propagation - Summary

• The reversed KL is harder to optimized. If the true
posterior p factorizes, then we can update single factors
iteratively by moment matching.

• Factors are in the exponential family.

• There is no guarantee that the iterations will converge.

• Expectation Propagation aims to preserve the marginals!

• Restriction to exponential family in EP implies: Any
product and any division between distributions stays in
parametric family and can be done analytically.

• Main applications involve Gaussian Processes and logistic
regression (less well suited for GMM).
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Variational Inference



Framework

We use variational inference to approximate the posterior
distribution

logp(x, θ) = ELBO(q, θ) + KL(q(z)||p(z|x, θ)),

logp(x, θ) ≥ Eq[logp(Z, x)]− Eq[logq(Z)]

To optimize the lower bound, we can use coordinate ascent!

Problems:

• In each iteration we go over all the data!

• Computing the gradient of the expectations above.
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Coordinate Ascent

Given the independence assumption, we can decompose the
ELBO as a function of individual q(zk):

ELBOj =

∫
q(zj)Ei6=j logp(zj|z−j, x, θ)dzj −

∫
q(zj) logq(zj)dzj

Optimality condition dELBO
dq(zj)

= 0

Exercise (Lagrange multipliers):

q?(zj) ∝ expE−j[logp(zj|Z−j, x)]

Coordinate Ascent: Iteratively update each q(z·).
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Conditionals

Last slide: q?(zj) ∝ expE−j[logp(zj|Z−j, x)]

Assume conditional is in the exponential family i.e.

p(zj|z−j, x) = h(zj) exp (η(z−j, x)
ᵀt(zj)− a(η(z−j, x)))

Note: We will see examples in the following Lectures!

Mean-field for exponential family

• Compute log of the conditional

logp(zj|z−j, x) = log(h(zj)) + η(z−j, x)
ᵀt(zj)− a(η(z−j, x))

• Compute expectation with respect to q(z−j)

E[logp(zj|z−j, x)] = log(h(zj)) + E[η(z−j, x)ᵀ]t(zj)− E[a(η(z−j, x))]

• Thus q?(zj) ∝ h(zj) exp(E[η(z−j, x)ᵀ]t(zj))
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Conditionals

Note: In the case of an exponential family, the optimal q(zj) is
in the same family as the conditional.

Coordinate Ascent

• Assuming variational parameter ν·

q(z1, · · · , zk|ν) =
k∏

i=1

q(zi|νi) (4)

• Then each natural variational parameter is set equal to
the expectation of the natural conditional parameter
given all the other variables and the observations:

ν?j = E[η(z−j, x)] (5)
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Exponential Families



Exponential Families

The exponential family of distributions over x, given
parameters η, is defined to be the set of distribution of the
form

p(x|η) = h(x) exp(ηᵀt(x)− a(η)) (6)

where:

• η are the so called natural parameters
• t(x) sufficient statistic
• a(η) log normalizer
• E[t(x)] = d

dηa(η)
• Higher moments are next derivatives.

Examples: Bernoulli (last week), Gaussian, Binomial,
Multinomial, Poisson, Dirichlet, Beta, Gamma etc.
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Conjugacy

Bayesian modeling allows to incorporate priors:

η ∼ F(·|λ),
xi ∼ G(·|η), for i ∈ {1, · · · ,n}

The posterior distribution of η given the data x1:n is then given
by

p(η|x, λ) ∝ F(η|λ)
n∏
i=1

G(xi|η)

We say F and G are conjugate if the above posterior belongs
to the same functional family as F.
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Conjugate prior for the Exponential Family

Exponential family members have a conjugate prior:

p(xi|η) = hl(x) exp(ηᵀt(x)− al(η))

p(η|λ) = hc(x) exp(λᵀ1η + λᵀ2(−al(η))− ac(λ))

• The natural parameter λ = (λ1, λ2) has dimension
dim(η) + 1

• The sufficient statistics are (η,−a(η))

Exercise: Show the above result.
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Conditional conjugacy

Let β be a vector of global latent variables (with
corresponding global parameters α and z be a vector of local
latent variables:

p(β, z, x) = p(β)
n∏
i=1

p(zi, xi|β)

Note: For stochastic variational inference, we make an
additional assumption:

p(zi, xi|β) = h(zi, xi) exp(βᵀt(zi, xi)− a(β))

and take an exponential prior on the global variables as the
corresponding conjugate prior:
pα(β) = h(β) exp(αᵀ[β,−a(β)]− a(α)) with α = (α1, α2).
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Mean-field for conjugates

Mean-field: q(z, β) = qλ(β)
∏k

i=1 qϕi(zi)

• λ global variational parameter

• ϕ local variational parameter

Local update ϕi ← Eλ[ηl(β, xi)]

Global update: λ← Eϕ[ηg(x, z)]

Note: Coordinate ascent iterates between local and global
updates.
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Algorithm

Algorithm 1 Mean-field with conjugate family assumption

1: Input:
model p, variational family qϕ(z), ,qλ(β)

2:3: while ELBO is not converged do
4: for each data point i do
5: Update ϕi ← Eλ[ηl(β, xi)]
6: end for
7: Update λ← Eϕ[ηg(x, z)]
8: end while
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Stochastic Variational

Inference



Gradient Optimization

λt+1 = λt + δ∇λf(λt)

or equally

arg max
dλ

f(λ+ dλ) st. ||dλ||2 ≤ ε (7)

Problem: Here it is the euclidean distance, which is not
suitable for probability distributions.

Natural Gradient for ELBO:

arg max
dλ

ELBO(λ+ dλ) st. Dsym
KL (qλ,qλ+dλ) ≤ ε (8)

where Dsym
KL (q,p) = KL(q||p) + KL(p||q)
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Gradient Optimization

Riemannian metric G(λ) sucht that:

dλᵀG(λ)dλ = Dsym
KL (qλ(β),qλ+dλ(β))

From information geometry, we know how to calculate the
natural gradient:

∇̂λELBO = G−1(λ)∇λELBO

where

G(λ) = E[(∇λ logqλ(β))(∇λ logqλ(β))
ᵀ] (9)
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Gradient Optimization for conjugate models

For our model class, we have:

∇λ logqλ(β) = t(β)− E[t(β)] (10)

Thus

G(λ) = ∇2
λa(λ) (11)

Recall
∇λELBO = ∇2

λa(λ)(E[η(x, z)]− λ) (12)

then

∇̂λELBO = G−1(λ)∇λELBO
= G−1(λ)∇2

λa(λ)(E[η(x, z)]− λ)
= (E[η(x, z)]− λ) 22



Gradient Step

In each iteration

λt = λt−1 + δt∇λt−1ELBO

where δt is the step size.

Then substituting the above

λt = (1− δt)λt−1 + δtE[η(x, z)]
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Algorithm

Algorithm 2 Mean-field with natural gradient

1: Input:
model p, variational family qϕ(z), ,qλ(β)

2:3: while ELBO is not converged do
4: for each data point i do
5: Update ϕi ← Eλ[ηl(β, xi)]
6: end for
7: Update λ← λ+ δ∇̂λELBO = (1− δ)λ+ δEq(ϕ)[ηg(x, z)]
8: end while
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Stochastic Optimization

Idea: Maximize a function f using noisy gradients H of that
function.

• Noisy gradient H: E[H] = ∇f
• Step size δt

• xt+1 ← xt + δtH(xt)

Convergence to a local optimum is guaranteed, when:

∞∑
t=1

δt =∞

∞∑
t=1

δ2
t <∞
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Stochastic Gradient Step

Recall

∇̂λELBO = (E[η(x, z)]− λ)

=

(
α1 +

n∑
i=1

Eq[t(zi, xi)],n+ α2

)
− λ

Idea: Construct a noisy natural gradient by sampling

• Sample index j ∼ Uniform(1, · · · ,n)
• Rescale

∇̂λELBO = (E[η(x(n)j , z
(n)
j )]− λ)

= (α1 + nEq[t(zj, xj)],1 + α2)− λ

=: λ̂− λ

Summary gradient step λt = (1− δt)λt−1 + δtλ̂
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Algorithm

Algorithm 3 Mean-field with stochastic gradient

1: Input:
model p, variational family qϕ(z), ,qλ(β)

2:3: while Stopping criteria is not fulfilled do
4: Sample index j ∼ Uniform(1, · · · ,n)
5: Update ϕi ← Eλ[ηl(β, xi)]
6: Compute global parameter estimate λ̂ = Eϕ[ηg(xj, zj)]
7: Optimize the global variational parameter λt+1 ← λt(1− δt) + δtλ̂

8: Check step size and update if required!
9: end while
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Black Box Variational

Inference



Gradient Estimates of the ELBO

ELBO = Eqν [logpθ(z, x)]− Eq[logqν(z)]

where ν are the parameters of the variational distribution and
θ the parameters of the model (as before).

Aim: Maximize the ELBO

Problem: Need unbiased estimates of ∇ν,θELBO.
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Reparametrization trick *

Simplified notation:

∇νEqν [fν(z)]

Assume that there exists a fixed reparameterization such that

Eqν [fν(z)] = Eq[fν(gν(ε))]

where the expectation on the right does now not depend on ν.
Then

∇νEq[fν(gν(ε))] = Eq[∇νfν(gν(ε))]

Solution: Obtain unbiased estimates by taking a Monte Carlo
estimate of the expectation on the right.
*Will be covered later
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Optimizing the ELBO

Eq(λ)[logp(z, x)− logq(z)] =: E[g(z)]

Exercise:
∇λELBO = ∇λE[g(z)] = E[g(z)∇ logq(z)] + E[∇g(z)]

where ∇ logq(z) is called the score function.

Note: The expectation of the score function is zero for any q
i.e.

Eq[∇ logq(z)] = 0

Thus, to compute a noisy gradient of the ELBO

• sample from q(z)
• evaluate ∇ logq(z)
• evaluate logp(x, z) and logq(z)
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Algorithm

Algorithm 4 Black Box Variational Inference

1: Input: data x, model p(x,z), variational family qϕ(z),
2: while Stopping criteria is not fulfilled do
3: Draw L samples zl ∼ qϕ(z)
4: Update variational paramater using the collected samples

ϕ← ϕ+ δt
1

L

L∑
l=1

∇ logq(zl)(logp(x, zl)− logq(zl))

5: Check step size and update if required!
6: end while

Note: Active research area (problem) is the reduction of the
variance of the noisy gradient estimator.
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Summary

What we have seen

• Expectation Maximization

• Introduced KL to understand convergence of EM.

• α- Divergence as a more general concept, including
Expectation Propagation

• Scalable Stochastic Variational Inference for conjugates in
the exponential family

• black box variational inference to overcome exponential
family assumption

What is not covered

• Problem for black box is the variance of the noisy gradient

• Extensions black box α-Divergence

• Online inference algorithms
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Next week

Plan for next week

• Originally planned: Bayesian Non-parametrics

• Most likely: State Space Models
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Questions?
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