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Overview

1. Motivational Examples

2. Sequential Data
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Motivational Examples



Sleep scoring in animals

• Sleep monitoring in animals is commonly done through
vigilance state classification of EEG/EMG recordings

• EEG/EMG signals are partitioned into short epochs of
equal size

• Each epoch is then individually scored accordingly, w.r.t.
corresponding vigilance state
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Sleep scoring in animals

Typical experimental pipeline:

1. Perform "intervention" on an animal subset

2. Record EEG/EMG signals over some period of time

3. Manually score EEG/EMG

4. Perform statistical posthoc analysis on scored data
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Manual sleep scoring is a bottleneck

• Slow!

• Laborious

• Prone to human errors

• Non-standardized

• Decoupled from posthoc analysis
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Automating sleep scoring

Some research efforts aim to replace visual inspection

• Automation of sleep scoring for both animals* and
humans

• Current state-of-the-art solution offer promising
prediction performance

• Some generalization issues of current solutions still
remain

*Sunagawa, G. A., Sei, H., Shimba, S., Urade, Y., & Ueda, H. R. (2013).
FASTER: an unsupervised fully automated sleep staging method for mice.
Genes to Cells, 18(6), 502-518.
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State of the art - Sleep Scoring (paper under review)
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Djordje Miladinovic et.al. End-to-end learning from EEG/EMG
to extrapolate animal sleep scoring across experimental
settings, labs and species, under submission 6



Images to Torques

Finn and Levine, Deep Visual Foresight for Planning Robot
Motion, ICRA 2017
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False Alarms ICU

Lehman et.al Representation Learning Approaches to Detect
False Arrhythmia Alarms from ECG Dynamics, MLHC 2018
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Deep Bayes

Karl et. al. Deep Variational Bayes Filters: Unsupervised
Learning of State Space Models from Raw Data, ICLR 2017
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Deep Bayes

Karl et. al. Deep Variational Bayes Filters: Unsupervised
Learning of State Space Models from Raw Data, ICLR 2017 10



Kalman Variational Autoencoders

Fraccaro et. al. A Disentangled Recognition and Nonlinear
Dynamics Model for Unsupervised Learning, NIPS 2017
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Additional Papers (random selection and order)

• Linderman et.al Bayesian Learning and Inference in
Recurrent Switching Linear Dynamical Systems, AISTATS
2017

• Archer et.al Black box variational inference for state
space models, Workshop ICLR 2016

• Doerr et.al Probabilistic Recurrent State-Space Models,
ICML 2018

• Krishnan et.al, Deep Kalman Filters, Workshop NIPS 2015

• Krishnan et.al, Structured Inference Networks for
Nonlinear State Space Models, AAAI 2017

• Johnson et.al. Composing graphical models with neural
networks for structured representations and fast
inference, NIPS 2016

• · · ·
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Sequential Data



Motivation

ẋ(t) =f(x(t),θ) ẋ1(t) : = θ1x1(t)− θ2x1(t)x2(t)

ẋ2(t) : = −θ3x2(t) + θ4x1(t)x2(t)
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Motivation
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ẋ2(t) : = −θ3x2(t) + θ4x1(t)x2(t)

13



Lotka-Volterra

ẋ(t) =f(x(t),θ)

y(t) =x(t) + ε(t),

ẋ1(t) : = θ1x1(t)− θ2x1(t)x2(t)

ẋ2(t) : = −θ3x2(t) + θ4x1(t)x2(t)
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Lotka-Volterra

ẋ(t) =f(x(t),θ)
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Algorithm

ẋ(t) =f(x(t),θ)

y(t) =x(t) + ε(t),

ẋ1(t) : = θ1x1(t)− θ2x1(t)x2(t)

ẋ2(t) : = −θ3x2(t) + θ4x1(t)x2(t)
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Dynamic Systems - State Space Models

ẋ(t) = f(x(t),u(t)), state evolution

y(t) = g(x(t),u(t)), observations

Most often used in practice are linear, discrete Systems

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Black Board: Examples and Connections
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New reference: Linear Gaussian Models
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Graphical Models

Most popular Graphical Models

• Hidden Markov Models

- Speech Recognition

- Sequence analysis in computational biology

- activity recognition

- ...

• Kalman Filter

- Cruise control in cars

- GPS navigation devices

- Tracking

- ....

Very simple models but very powerful!
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Inference tasks

Filtering P(Zt|X1:t)

Prediction P(Zt+τ |X1:t)

Smoothing P(Zt|X1:t) for 1 ≤ t ≤ T
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HMM and Kalman Filter

HMM: Zi Multinomial, Xi arbitrary

Kalman: Zi,Xi Gaussian

Extended Kalman: Zi Gaussian, Xi arbitrary
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Recall EM Algorithm (Lecture 2)

Need to maximize

logp(D) =
∑
x∈D

logp(x) =
∑
x∈D

log

(∑
z

p(x|z)p(z)
)

Problem: Only x is observed but we have parameters θ and
latent variables z

The Expectation Maximization (EM) algorithm:

• Expectation: Assign values to hidden/missing variables
i.e. compute p(z|x; θt)

• Maximization: Maximize parameter log likelihood via
θt+1 = arg maxθ

∑
x∈D Ez∼p(z|x,θt) logp(x, z, θ)

• Repeat until convergence for t = 1,2, · · · , starting with θ0
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Illustration EM

D KL Q ( i− 1) (X ) p(θ, X |81

L Q ( t ) (θ)82

log p(θ, X )83

References84

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner85

di�erential equations with gaussian processes,”86

no. 429-443, 2008.87

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive88

gradient matching with gaussian processes,”89

state variables appear in quadratic form in equation6. ODE’s such as the Lotka-Volterra system
full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.
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References85
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M-step

E-step
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EM using Jensen

Y observations, X latent states, θ parameters.

log P(Y|θ) = log
∑
X

P(Y,X|θ)

= log
∑
X

p(X, Y|θ)q(X)
q(X)

≥
∑
X

q(X) log
p(X, Y|θ)
q(X)

=
∑
X

q(X) logp(X, Y|θ)−
∑
X

q(X) logq(X)

= L(q, θ)
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Learning HMMs using the EM algorithm

log P(X1:T , Y1:t) = log P(X1)+
T∑

t=1

log P(Yt|Xt)+
T∑

t=2

log P(Xt|Xt−1)

Hidden Markov Model i.e. Xt categorical (with K values). Thus
we can represent Xt as a K dimensional unit vector e.g. for
taking on the second value:

Xt = [010 · · ·0]ᵀ

The transition probability can then be written as:

P(Xt|Xt−1) =
K∏
i=1

K∏
j=1

A
Xt,i,Xt−1,j

ij

where Aij is the transition matrix, with non-negative entries
and each row sums to 1. 24



State transition models

log P(Xt|Xt−1) =
K∑
i=1

K∑
j=1

Xt,iXt−1,j logAij = Xᵀ
t (logA)Xt−1

Similarly if initial state probabilities are arranged in a vector π,
of dimension K × 1 with πi = P(X1i=1), then

P(X1|π) =
K∏
i=1

πX1i
i

and

log P(X1) = Xᵀ
1 logπ
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Observation model

If Yt is discrete and can take on D values, we can again write

log P(Yt|Xt) = Yᵀ
t (logB)Xt

where B is a D× K dimensional emission probability matrix.

The final parameter set of the model is then

θ = (A,B, π)

Goal: arg maxθ log P(Y)
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Expectation Maximization for HMM

M-Step

Aij ∝
T∑

t=2

E[Xt,iXt−1,j]←
∑T

t=2 E[Xt,iXt−1,j]∑T
t=2 E[Xt−1,j]

(1)

π ← E[X1,i] (2)

Bdi ←
∑T

t=1 Yt,dE[Xt,i]∑T
t=1 E[Xt,i]

(3)
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The forward algorithm

αt = P(Yt+1:T |Xt) =

=

∑
Xt−1

P(Xt−1, Y1:t−1)P(Xt|Xt−1)

 P(Yt|Xt)
=

∑
Xt−1

αt−1P(Xt|Xt−1)

 P(Yt|Xt)
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The backward algorithm

βt = P(Xt, Y1:t) =

=
∑
Xt+1

P(Yt+2:T |Xt+1)P(Xt+1|Xt)P(Yt+1|Xt+1)

=
∑
Xt+1

βt+1P(Xt+1|Xt)P(Yt+1|Xt+1)
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Expectations for EM

E-Step

E[Xt,i] = γti =
αt,iβt,i∑
j αt,jβt,j

E[Xt,iXt−1,j] = ζtij =
αt−1,jAijP(Yt|Xt,i)βt,i∑
k,l αt−1,kAklP(Yt|Xt,l)βt,l

Exercise: Kalman Filter (update equations, Bishop Chapter
13, Appendix 3 of review paper, idea next slide)
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Linear Gaussian State Space Models

Assumption: Initial states are Gaussian distributed:

x1 ∼ N (µ1,Q1)

With linear dynamics all future states xt and observations will
be Gaussian distributed:

P(xt+1|xt) = N (Axt,Q)

P(yt|xt) = N (Cxt,R)

With Markov property it follows:

P(X1:T , Y1:T) = P(x1)
T∏

t=2

P(xt|xt−1)
T∏

t=1

P(yt|xt)
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Linear Gaussian State Space Models II

From before

P(X1:T , Y1:T) = P(x1)
T∏

t=2

P(xt|xt−1)
T∏

t=1

P(yt|xt)

Each of the above densities is Gaussian, thus:

−2 log P(X1:T , Y1:T) =
T∑

t=1

[(yt − Cxt)
ᵀR−1(yt − Cxt) + log |R|]

+
T−1∑
t=1

[(xt+1 − Axt)
ᵀQ−1(xt+1 − Axt) + log|Q|]

+ (x1 − µ1)
ᵀQ−1

1 (x1 − µ1) + const.

Method: Again EM, M-Step e.g. C← (
∑

t ytx
ᵀ
t )(
∑

t xtx
ᵀ
t )
−1

Problem x is hidden <- use expectations! (kalman smoother)
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Summary

Linear Gaussian State Space Models

Problems:

• state dynamics can be non-linear

• relations between observed and latent states can be
non-linear

• noise can be non-Gaussian

Extensions and Generalisations (Next week)
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Next week

Plan for next week

• Factor Graph

• Viterbi Algorithm

• Extensions: Switching, Factorial, Recurrency
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Questions?
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