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Conference on Robot Learning
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Announcement Guest Lecture: Olivier Bachem - Genera-
tive Adversarial Networks, 9th of November*

*Image from https://www.christies.com/Features/
A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.
aspx
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Recall HMM



Dynamic Systems - State Space Models

ẋ(t) = f(x(t),u(t)), state evolution

y(t) = g(x(t),u(t)), observations

Most often used in practice are linear, discrete Systems

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
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Inference tasks

Filtering P(Zt|X1:t)

Prediction P(Zt+τ |X1:t)

Smoothing P(Zt|X1:t) for 1 ≤ t ≤ T
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HMM and Kalman Filter

HMM: Zi Multinomial, Xi arbitrary

Kalman: Zi,Xi Gaussian

Extended Kalman: Zi Gaussian, Xi arbitrary
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Recall EM Algorithm (Lecture 2)

Need to maximize

logp(D) =
∑
x∈D

logp(x) =
∑
x∈D

log

(∑
z

p(x|z)p(z)

)

Problem: Only x is observed but we have parameters θ and
latent variables z

The Expectation Maximization (EM) algorithm:

• Expectation: Assign values to hidden/missing variables
i.e. compute p(z|x; θt)

• Maximization: Maximize parameter log likelihood via
θt+1 = arg maxθ

∑
x∈D Ez∼p(z|x,θt) logp(x, z, θ)

• Repeat until convergence for t = 1,2, · · · , starting with θ0

7



EM using Jensen

Y observations, X latent states, θ parameters.

log P(Y|θ) = log
∑
X

P(Y,X|θ)

= log
∑
X

p(X, Y|θ)
q(X)

q(X)

≥
∑
X

q(X) log
p(X, Y|θ)

q(X)

=
∑
X

q(X) logp(X, Y|θ)−
∑
X

q(X) logq(X)

= L(q, θ)

8



Learning HMMs using the EM algorithm

log P(X1:T , Y1:t) = log P(X1)+
T∑

t=1

log P(Yt|Xt)+
T∑

t=2

log P(Xt|Xt−1)

Hidden Markov Model i.e. Xt categorical (with K values). Thus
we can represent Xt as a K dimensional unit vector e.g. for
taking on the second value:

Xt = [010 · · ·0]ᵀ

The transition probability can then be written as:

P(Xt|Xt−1) =
K∏
i=1

K∏
j=1

A
Xt,i,Xt−1,j

ij

where Aij is the transition matrix, with non-negative entries
and each row sums to 1. 9



State transition models

log P(Xt|Xt−1) =
K∑
i=1

K∑
j=1

Xt,iXt−1,j logAij = Xᵀ
t (logA)Xt−1

Similarly if initial state probabilities are arranged in a vector π,
of dimension K × 1 with πi = P(X1i=1), then

P(X1|π) =
K∏
i=1

πX1i
i

and

log P(X1) = Xᵀ
1 logπ
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Observation model

If Yt is discrete and can take on D values, we can again write

log P(Yt|Xt) = Yᵀ
t (logB)Xt

where B is a D× K dimensional emission probability matrix.

The final parameter set of the model is then

θ = (A,B, π)

Goal: arg maxθ log P(Y)
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Expectation Maximization for HMM

M-Step

Aij ∝
T∑

t=2

E[Xt,iXt−1,j]←
∑T

t=2 E[Xt,iXt−1,j]∑T
t=2 E[Xt−1,j]

(1)

π ← E[X1,i] (2)

Bdi ←
∑T

t=1 Yt,dE[Xt,i]∑T
t=1 E[Xt,i]

(3)

E-Step Calculate Expectations using forward-backward
algorithm.

E[Xt,i] = γti =
αt,iβt,i∑
j αt,jβt,j

E[Xt,iXt−1,j] = ζtij =
αt−1,jAijP(Yt|Xt,i)βt,i∑
k,l αt−1,kAklP(Yt|Xt,l)βt,l 12



Linear Gaussian State Space Models

Assumption: Initial states are Gaussian distributed:

x1 ∼ N (µ1,Q1)

With linear dynamics all future states xt and observations will
be Gaussian distributed:

P(xt+1|xt) = N (Axt,Q)

P(yt|xt) = N (Cxt,R)

With Markov property it follows:

P(X1:T , Y1:T) = P(x1)
T∏

t=2

P(xt|xt−1)
T∏

t=1

P(yt|xt)
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Linear Gaussian State Space Models II

From before

P(X1:T , Y1:T) = P(x1)
T∏

t=2

P(xt|xt−1)
T∏

t=1

P(yt|xt)

Each of the above densities is Gaussian, thus:

−2 log P(X1:T , Y1:T) =
T∑

t=1

[(yt − Cxt)
ᵀR−1(yt − Cxt) + log |R|]

+
T−1∑
t=1

[(xt+1 − Axt)
ᵀQ−1(xt+1 − Axt) + log|Q|]

+ (x1 − µ1)ᵀQ−1
1 (x1 − µ1) + const.

Method: Again EM, M-Step e.g. C← (
∑

t ytx
ᵀ
t )(
∑

t xtx
ᵀ
t )−1

Problem x is hidden <- use expectations! (kalman smoother)
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HMM Extensions



Recall from last time

Problems for LDS and HMM:

• state dynamics can be non-linear

• relations between observed and latent states can be
non-linear

• noise can be non-Gaussian

• HMM are dynamic extensions to Mixture Models -> in
theory (with enough components) they can model any
distribution.

• However HMMs are inefficient wrt. number of required
states and a high number of states might result in severe
over-fitting!
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Factorial HMM

Generalize HMM by representing state as collection of
discrete state variables

Xt = X
(1)
t , · · · ,X(m)

t , · · · ,X(M)
t

each can take K(m) values. Assume K(m) = K for simplicity for
all m.

Then (from before) the transition matrix would be of size
KM × KM!

Problem:

• equivalent to HMM with KM states
• time and sample complexity of estimation are

exponential in M.
• unlikely to discover interesting structure since all

variables can arbitrarily interact.
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Factorial HMM

Idea: Constrain underlying state transitions - each state
variable evolves according to its own dynamics and is a prior
uncoupled from the other states:

P(Xt|Xt−1) =
M∏

m=1

P(X
(m)
t |X

(m)
t−1)

Motivation for FHMM:

• transition structure can now be described using M distinct
K × K matrices

• richer modeling tool

• inclusion of prior structural information about state
variables underlying the dynamics of the system
generating the data.
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Factorial HMM

Observation at time t can depend on all states at that time
step!

Idea Assume linear Gaussian dependence!

P(Yt|Xt) = |R|−
1
2 (2π)

−D
2 exp(−1

2
(Yt − µt)ᵀR−1(Yt − µt))

where µt =
∑M

m=1 W
(m)X

(m)
t

• W(m) is a D× K matrix, where columns are contributions
to the means for each setting of X

(m)
t

• R is a D× D covariance matrix

Interpretation: GMM with KM mixture components, each
having constant covariance matrix R and underlying markov
dynamics.
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Switching State Space Models

Recall (last week): HMM discrete latent variables, state space
model (continuous).

idea: Model time series with continuous but nonlinear
dynamics by combining HMM and SSM!

Switching State Space Models

• Yt is modelled using latent space comprising M real
valued state vectors X

(M)
t and one discrete state St

• St is discrete and can take on Mvalues, so called Switch.

P(S,X(1), · · · ,X(M), Y) = P(S1)
T∏

t=2

P(St|St−1)
M∏

m=1

[P(X
(m)
1 )

T∏
t=2

P(Xm
t |X

(m)
t−1)]

×
T∏

t=1

P(Yt|S,X(1), · · · ,X(M))
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Switching State Space Models

P(S,X(1), · · · ,X(M), Y) = P(S1)
T∏

t=2

P(St|St−1)
M∏

m=1

[P(X
(m)
1 )

T∏
t=2

P(Xm
t |X

(m)
t−1)]

×
T∏

t=1

P(Yt|S,X(1), · · · ,X(M))

Conditioned on the switch state i.e. St = m, the observable is
a multivariate Gaussian with output equation given by state
space model m.

P(Y|X(1), · · · ,X(M),S = m) = |R|−
1
2 (2π)

−D
2 exp

[
−1

2

(
Yt − C(m)x

(m)
t

)ᵀ
R−1

(
Yt − C(m)x

(m)
t

)]
where

• D is the dimension of the observation vector
• R is the observation noise covariance matrix
• Cm is the output matrix for state space model m

(Yt = CXt + noise)
20



Example - Still highly used
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Example - Still highly used*

*figure from: Lindermann et.al. Recurrent Switching Linear Dynamical
Systems, tech report 2016
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Inference



Mean-filed for factorial HMM

Variational approximation:

Q(X|ϕ) =
T∏

t=1

M∏
m=1

Q(X
(m)
t |ϕ

(m)
t )

where ϕ = {ϕ(m)
t } are the variational parameters and the

means of the state variables X
(m)
t , which is represented as a

K-dimensional vector.

Assuming independence we can thus write:

Q(X
(m)
t |ϕ

(m)
t ) =

K∏
k=1

(
ϕ
(m)
t,k

)X(m)
t,k

where X
(m)
t,k ∈ {0,1} and

∑K
k=1 X

(m)
t,k = 1.
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Mean-filed for factorial HMM

Exercise*

Update for variational parameter

ϕ
(m),new
t = softmax

(
Wm′R−1Ỹ

(m)
t − 1

2
∆(m) + (logϕ(m))ϕ

(m)
t−1 + (logϕ(m))ᵀϕ

(m)
t+1

)
where

• Ỹ
(m)
t = Yt −

∑
l6=mW(l)ϕ

(l)
t

• ∆(m) is the vector of diagonal elements of W(m)′R−1W(m)

• logϕ(m) denotes the elementwise logarithm of the
transition matrix ϕ(m)

*Solution in: Ghahramani and Jordan, Factorial Hidden Markov Models, NIPS
1996
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Mean-filed for factorial HMM

Intuition

• Given one particular observation sequence, the hidden
state variables for the M Markov chains at time step t are
stochastically coupled.

• Stochastic coupling is approximated by a system in which
hidden variables are uncorrelated but have coupled
means.

• The mean-field approximation solves for the deterministic
coupling of the means that best approximate the
stochastically coupled system.

Extension: Recall (Structured mean-field) and Bayesian
HMMs.
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Algorithm Switching State Space*

Algorithm 1 Learning Switching State Space Models

1: Input:
Initialisations of all parameters

2:3: Until Convergence:
4: E-Step
5: Compute q

(m)
t for state space model m

6: Compute h
(m)
t using forward-backward algorithm on HMM with observa-

tions prob. q
(m)
t

7: Run Kalman smoothing for each state.
8: M-Step
9: Re-estimate parameters for each state space model using the data

weighted by h
(m)
t

10: Re-estimate parameters for the switching process using forward back-
ward algorithm.

*Natural Approximation: make M-state space models and switch variable
independent-> Can use tractable inference from last week / exercise.
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Factor Analysis



Example - Recall GMM

• Assume data x(i) ∈ Rn that comes from several
Gaussians.

• So far: Assumed training set size m is larger than n. We
then used

• Here we used the EM-algorithm for inference.

Question: What can we do if n >> m?
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Motivation

• Often there are some unknown underlying causes of the
data.

• Continuous factors which control the data we observe
data manifold (or subspace).

• Training continuous latent variable models is often called
dimensionality reduction, since there are typically many
fewer latent dimensions.

• Examples (see reference) PCA, Factor Analysis, ICA

• Reason for choosing continuous representation is often
motivated by efficiency.

• Mixture models uses discrete class variable: clustering

• Simplest case: linear subspace and underlying latent
variable with a Gaussian distribution.
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Factor Analysis Model

z ∈ Rk is a latent variable and y is the observed data:

z ∼ N (0,1)

x|z ∼ N (µ+ Λz,Ψ)

Parameters of our model are thus:

• µ ∈ Rn

• Λ ∈ Rn×k

• Diagonal matrix Ψ ∈ Rn×n

Note: Dimensionality reduction since k is chosen smaller than
n.
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Illustration

where y are the observations.
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Equivalent formulation

z ∼ N (0,1)

ε ∼ N (0,Ψ)

x = µ+ Λz + ε

where ε and z are independent.

Joint model:

[
z
x

]
∼ N (µzx,Σ)

Goal: Identify µzx and Σ.
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Factor Analysis

Joint model:

[
z
x

]
∼ N

([
0
µ

]
,

[
1 Λᵀ

Λ ΛΛᵀ + Ψ

])

Marginal Distribution

x ∼ N (µ,ΛΛᵀ + Ψ)

Log-Likelihood of parameters

l(µ,Λ,Ψ) = log
m∏
i=1

1

(2π)
n
2 |ΛΛᵀ + Ψ|

1
2

exp

(
−1

2
(x(i) − µ)ᵀ(ΛΛᵀ + Ψ)−1(x(i) − µ)

)
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EM for Factor Analysis

Maximum likelihood learning using EM:

• E-Step: qt+1 = p(z|x, θt)
• M-Step: θt+1 = arg maxθ

∑
n

∫
z q

t+1(z|x) logp(x, z|θ)dz

where θ = (µ,Λ,Ψ). Results for both steps:

• E-Step
qt+1 = p(z|x, θt) = N (z|m(i),V(i)) where
V(i) = (1 + ΛᵀΨ−1Λ)−1 and m(i) = V(i)ΛᵀΨ−1(x− µ).

• M-Step Λt+1 =
(∑

i x
(i)m(i)ᵀ

) (∑
i V

(i)
)−1

Ψt+1 = 1
ndiag

[∑
i x

(i)x(i)
ᵀ

+ Λt+1
∑

im
(i)x(i)

ᵀ
]
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Connection with State Space Models

State space models are dynamical generalizations of FA
model.

xt = Axt−1 + Gwt

whee wt = N (0,Q)

• Linear combinations of Gaussians is Gaussian i.e. added
white noise wt does not affect linearity.

• at each point in time t, we use a FA model to represent
the output

• C is the loading matrix, shared across all (xt, yt) pairs.

• We assume all data points lie in the same
low-dimensional space.
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Summary - so far

• Factor analysis implies latent variable is assumed to lie
on low-dimensional linear subspace

• Similar to mixture model, now just continuous

• Dimensionality reduction technique

• State space models (last week) are chain of Factor
analysis models

• latent variables are connected sequentially in chains.

• HMM as dynamic generalization of mixture model

• Linear state space models are dynamic generalization of
Factor analysis models.
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Next week

Plan for next week:

• Continue with Dimensionality Reduction i.e. unifying
framework and PCA, ICA

• Summary Linear State Space Models

• Missing: Recurrency i.e. non-Markovian dynamics
(November)

36



Questions?

36


	Recall HMM
	HMM Extensions
	Inference
	Factor Analysis

