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Conference on Robot Learning

Conference on Robot Learning (CoRL) - 2018 Edition

The Conference on Robot Learning (CoRL) is a new annual international conference focusing on the intersection of robotics and machine learning. The first
meeting (CoRL 2017) was held in Mountain View, California on November 13 - 15, 2017, and brought together about 350 of the best researchers working on
robotics and machine learning.

CoRL 2018 will be held on October 29th-31st, 2018, in Zirich, Switzerland.




Announcement Guest Lecture: Olivier Bachem - Genera-
tive Adversarial Networks, 9th of November®

“Image from https://www.christies.com/Features/ 3
A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.
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Recall HMM



Dynamic Systems - State Space Models

x(t) = f(x(t),u(t)), state evolution

y(t) = g(x(t),u(t)), observations

Most often used in practice are linear, discrete Systems



Inference tasks

Filtering P(Z:|X1.t)
Prediction P(Z;,|X1.t)
Smoothing P(Z;|Xy.t) for 1 <t <T



HMM and Kalman Filter

HMM: Z; Multinomial, X; arbitrary
Kalman: Z;, X; Gaussian

Extended Kalman: Z; Gaussian, X; arbitrary



Recall EM Algorithm (Lecture 2)

Need to maximize

logp(D) = > logp(x) = > log (Zp (x|z)p )

xeb xeb

Problem: Only x is observed but we have parameters 6 and
latent variables z

The Expectation Maximization (EM) algorithm:

* Expectation: Assign values to hidden/missing variables
i.e. compute p(z|x; 6)

« Maximization: Maximize parameter log likelihood via
Or+1 = argmaxg Y, p Ezpzix0,) 109 P(X, 2, 0)

¢ Repeat until convergence fort =1,2,---, starting with 6q



EM using Jensen

Y observations, X latent states, 6 parameters.

log P(Y]0) = log Y~ P(Y,X|0)
X
a(x)
q(X)

>Zq Iog(Y)|0)

—Zq )log p(X, Y|6) — > q(X)log q(X)

X



Learning HMMs using the EM algorithm

T T

log P(X1.7, Y1:t) = log P(X1)+Z log P(Yt\xt)‘i‘z log P(X¢|X¢—1)
t=1 t=—2

Hidden Markov Model i.e. X; categorical (with K values). Thus
we can represent X; as a K dimensional unit vector e.g. for
taking on the second value:

Xt =[010---0]T

The transition probability can then be written as:

P(Xe|Xt-1) HHAX“Xt v

i=1j=1
where Aj; is the transition matrix, with non-negative entries
and each row sums to 1. 9



State transition models

K K

log P(XelXe-1) = D 0D XeiXe-1,109Aj = X] (Iog A)X 1
i=1 j=1

Similarly if initial state probabilities are arranged in a vector 7,
of dimension K x 1 with 7; = P(X1j=1), then

K

P(Xa|m) = HW,X“

i=1

and
log P(X1) = X] logm
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Observation model

If Yt is discrete and can take on D values, we can again write

log P(Y¢|X¢) = Y[ (log B)X:
where B is a D x K dimensional emission probability matrix.

The final parameter set of the model is then

0= (A,B,m)

Goal: arg maxg log P(Y)
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Expectation Maximization for HMM

M-Step
§ > ioa BXeiXe1,]
Ajj ZE[Xt,ithl,j] — == : ’ (1)
t=2 Et:z IE[Xt—l,j]
< E[Xq,] (2)
T
Y glB[ Xt
Byj Zt:;l_. t,d [ t,l] (3)
Zt:l E[Xt,i]
E-Step Calculate Expectations using forward-backward
algorithm.
atift
[ t,/] Vti Zj Oltjﬁt,j

ae—1 jAP(Ye| Xt i) B
>k -1 kAP(YelXe) Bey 12

EX¢iXt—1j] = Cuj =



Linear Gaussian State Space Models

Assumption: Initial states are Gaussian distributed:
x1 ~ N (p1, Q1)

With linear dynamics all future states x; and observations will
be Gaussian distributed:

P(xes1lxe) = N(Axe, Q)
P(ye[xe) = N(Cxt, R)

With Markov property it follows:

—

.
P(X171,Y1:1) = P(x1) HP Xt|Xt-1 HP Yelxe)
t=2 t=1

13



Linear Gaussian State Space Models Il

From before

T T
P(X11,Y1:1) = P(x1 HP Xt|Xe-1 H (velxe)
t=2 t=1
Each of the above densities is Gaussian, thus:

;
—2log P(X1.1,Y1.7) = Z[(Yt — Cxt)"R™*(yt — Cxt) + log |R]]

+ ) [(Xe41 — Axe) T (xeq1 — Axe) + log| Q]
t=1

+ (x1 — p1)TQ7 H(x1 — pa) + const.
Method: Again EM, M-Step e.g. C + (3, yex?)(O_p xex?)~*
Problem x is hidden <- use expectations! (kalman smoother)
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HMM Extensions




Recall from last time

Problems for LDS and HMM:

e state dynamics can be non-linear

* relations between observed and latent states can be
non-linear

* noise can be non-Gaussian

* HMM are dynamic extensions to Mixture Models -> in
theory (with enough components) they can model any
distribution.

* However HMMs are inefficient wrt. number of required
states and a high number of states might result in severe
over-fitting!

15



Factorial HMM

Generalize HMM by representing state as collection of
discrete state variables

Xt :Xgl),... ,Xgm),--~ ,XEM)

each can take K™ values. Assume K(™ = K for simplicity for
all m.
Then (from before) the transition matrix would be of size
KM x kM
Problem:

 equivalent to HMM with K" states

e time and sample complexity of estimation are

exponential in M.

e unlikely to discover interesting structure since all
variables can arbitrarily interact.

16



Factorial HMM

Idea: Constrain underlying state transitions - each state
variable evolves according to its own dynamics and is a prior
uncoupled from the other states:

M
P(XelXe-1) = [T PX™IXI™)

m=1
Motivation for FHMM:

e transition structure can now be described using M distinct
K x K matrices

e richer modeling tool

* inclusion of prior structural information about state
variables underlying the dynamics of the system
generating the data.

17



Factorial HMM

Observation at time t can depend on all states at that time
step!

Idea Assume linear Gaussian dependence!

2 (Y — 1) RI(Ye — )

P(YelXe) = |RI"2(27) 7 exp(—5

where p; =S¥ W<m)x§m>

« WM is a D x K matrix, where columns are contributions
to the means for each setting of xg”’)

e RisaD x D covariance matrix

Interpretation: GMM with KM mixture components, each
having constant covariance matrix R and underlying markov
dynamics.

18



Switching State Space Models

Recall (last week): HMM discrete latent variables, state space
model (continuous).

idea: Model time series with continuous but nonlinear
dynamics by combining HMM and SSM!

Switching State Space Models

* Y: is modelled using latent space comprising M real
valued state vectors XEM) and one discrete state S¢

e S;is discrete and can take on Mvalues, so called Switch.

T M T
P(S. XM, XM ) = P(s1) [] P(SelSe-1) T IPOAE™) T POx X))
t=2 m=1 t=2

T
% HP(Yt‘S7X(1)7 . ,X(M))
t=1

19



Switching State Space Models

P(s, XD, ... XM y) = p(sy) HP(St\St 1) H P(X(m))HP(Xm|X(m))]
t=2 t=2

T
% HP(Yt‘S7X(1)7 . ,X(M))
t=1

Conditioned on the switch state i.e. St = m, the observable is
a multivariate Gaussian with output equation given by state
space model m.

P(YIXD, ... XM s = m) = |R|"%(27) 7 exp [—% (Yt - C(’")XE’"))TR’1 (Y: - C("”Xﬁm)ﬂ

where

e D is the dimension of the observation vector
¢ R is the observation noise covariance matrix
e C™ is the output matrix for state space model m

(Y = CXt + noise)
20



Example - Still highly used

nature — N

COMMUNIGATIO

Article | OPEN Published: 27 June 2018

Uncovering hidden brain state dynamics
that regulate performance and decision-
making during cognition

Jalil Taghia E, Weidong Cai H, Srikanth Ryali, John Kochalka, Jonathan Nicholas, Tianwen Chen &

Vinod Menon ™

Nature Communications 9, Article number: 2505 (2018) = Download Citation +
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Example - Still highly used”

"Run to Left Corner" "Run to Right Corner"  "Cut to Basket"  "Cut Along 3pt Line"  "Baseline Drive"

0.05 State Usage State Usage State Usage State Usage State Usage

ml.llll.l-ll-.--_-l.-.-l

[ = L james =W D.wade BN C.Bosh EEE M. Chamers EEE R Allen |

Figure 5: Exploratory analysis of NBA player trajectories from the Nov. 1, 2013 game between the Miami Heat and the
Brooklyn Nets. (Top) When applied to trajectories of five Heat players, the recurrent AR-HMM (ro) discovers K = 30
discrete states with linear dynamics; five hand-picked states are shown here along with our names. Speed of motion is
proportional to length of arrow. Location-dependent state probability is proportional to opacity of the arrow. (Bottom)
The probability with which each player uses the corresponding state under the posterior.

*ﬁgure from: Lindermann et.al. Recurrent Switching Linear Dynamical
Systems, tech report 2016
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Inference




Mean-filed for factorial HMM

Variational approximation:

T M m)
QX)) = HH ot

where ¢ = {cpg’" } are the variational parameters and the

means of the state variables x§"’), which is represented as a

K-dimensional vector.

Assuming independence we can thus write:

m)

Q™) = T (+7)

k=1
where X} € {0,1} and S_F_, X} = 1.

)
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Mean-filed for factorial HMM

Exercise”

Update for variational parameter

AT — softma (WPRTTE™ — LA™+ (log p™){") + (09 ™)1l )
where
o>(m /
sV = Y= S WO
« AM) s the vector of diagonal elements of W(mM'R=1y/(m)

* log cp(m) denotes the elementwise logarithm of the
transition matrix ¢(™

*Solution in: Ghahramani and Jordan, Factorial Hidden Markov Models, NIPS
1996
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Mean-filed for factorial HMM

Intuition

¢ Given one particular observation sequence, the hidden
state variables for the M Markov chains at time step t are
stochastically coupled.

e Stochastic coupling is approximated by a system in which
hidden variables are uncorrelated but have coupled
means.

* The mean-field approximation solves for the deterministic
coupling of the means that best approximate the
stochastically coupled system.

Extension: Recall (Structured mean-field) and Bayesian
HMMs.

25



Algorithm Switching State Space”

Algorithm 1 Learning Switching State Space Models

1: Input:
Initialisations of all parameters

: Until Convergence:

E-Step

: Compute qgm) for state space model m

. Compute hgm) using forward-backward algorithm on HMM with observa-
tions prob. q§”’)

: Run Kalman smoothing for each state.

8: M-Step

9: Re-estimate parameters for each state space model using the data

weighted by hE’")
10: Re-estimate parameters for the switching process using forward back-
ward algorithm.

~

*Natural Approximation: make M-state space models and switch variable
independent-> Can use tractable inference from last week / exercise.
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Factor Analysis




Example - Recall GMM

« Assume data x() € R" that comes from several
Gaussians.

e So far: Assumed training set size m is larger than n. We
then used

* Here we used the EM-algorithm for inference.

Question: What can we do if n >> m?

27



* Often there are some unknown underlying causes of the
data.

e Continuous factors which control the data we observe
data manifold (or subspace).

e Training continuous latent variable models is often called
dimensionality reduction, since there are typically many
fewer latent dimensions.

e Examples (see reference) PCA, Factor Analysis, ICA

¢ Reason for choosing continuous representation is often
motivated by efficiency.

¢ Mixture models uses discrete class variable: clustering

e Simplest case: linear subspace and underlying latent
variable with a Gaussian distribution.

28



Factor Analysis Model

z € R¥ is a latent variable and y is the observed data:

z~N(0,1)
X|z ~ N(p+ Nz, V)

Parameters of our model are thus:

c nelR”
. /\ERnXk

e Diagonal matrix ¥ € R"*"

Note: Dimensionality reduction since k is chosen smaller than
n.

29



y3

: 30
where y are the observations.



Equivalent formulation

z~N(0,1)
e~ N(0,V)
X=p+Nz+c¢

where ¢ and z are independent.

Joint model:
z
|:X:| ~ N(MZX7 Z)

Goal: Identify uzx and X.

31



Factor Analysis

Joint model:

(B o))

Marginal Distribution
X ~ N (p, AT + W)
Log-Likelihood of parameters

Iy A, W) IogH

1, .
- - ~(x) _  )T(AAT “1(x() _
exp X )T(ANT + W X M)
iq (2m)2 |/\/\T+\U| < 2( A ) )

32



EM for Factor Analysis

Maximum likelihood learning using EM:

+ E-Step: ¢'! = p(z|x, 6%)

« M-Step: 0" =argmaxg >, [,q""*(z|x) log p(x, z|6)dz
where 6 = (u, A\, V). Results for both steps:

* E-Step
qt+1 — p(z|x7 Ht) = j\/’(z|m(’), V(i)) where
VD = (14 ATWIA) "t and mO) = VOATU L (x — 1),

+ M-Step AL = (32, xOmOT) (52, v0)
witl = lgiag {Z, xDx(T 4 AL S mU x(")T}
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Connection with State Space Models

State space models are dynamical generalizations of FA
model.

Xt = AXe—1 + Gwy
whee w; = N (0,Q)

e Linear combinations of Gaussians is Gaussian i.e. added
white noise w; does not affect linearity.

e at each point in time t, we use a FA model to represent
the output

 Cis the loading matrix, shared across all (x¢, ) pairs.

¢ We assume all data points lie in the same
low-dimensional space.

34



e Factor analysis implies latent variable is assumed to lie
on low-dimensional linear subspace

e Similar to mixture model, now just continuous

¢ Dimensionality reduction technique

¢ State space models (last week) are chain of Factor
analysis models

e latent variables are connected sequentially in chains.
« HMM as dynamic generalization of mixture model

e Linear state space models are dynamic generalization of
Factor analysis models.

35



Plan for next week:

e Continue with Dimensionality Reduction i.e. unifying
framework and PCA, ICA

e Summary Linear State Space Models

e Missing: Recurrency i.e. non-Markovian dynamics
(November)
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Questions?
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