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Overview

1. Factor Analysis

2. Principal Component Analysis

3. Connection with State Space Models
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Motivation

• Often there are some unknown underlying causes of the
data.

• Continuous factors which control the data we observe
data manifold (or subspace).

• Training continuous latent variable models is often called
dimensionality reduction, since there are typically many
fewer latent dimensions.

• Examples (see reference) PCA, Factor Analysis, ICA

• Reason for choosing continuous representation is often
motivated by efficiency.

• Mixture models uses discrete class variable: clustering

• Simplest case: linear subspace and underlying latent
variable with a Gaussian distribution.
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Recall - Principal Component Analysis

Limitations of PCA

• No probabilistic model for observed data
• Difficulty to deal with missing data
• Naive PCA uses a simplistic distance function to assess

covariance.

Motivation for probabilistic PCA:

• address limitations
• allows to combine multiple PCA models as probabilistic

mixtures

“... the definition of a likelihood measure enables a
comparison with other probabilistic techniques, while
facilitating statistical testing and permitting the application of
Bayesian models...”*
*Tipping and Bishop: Probabilistic Principal Component Analysis, Royal

Statistical Society: Series B, 1999 3



Factor Analysis



Factor Analysis Model

z ∈ Rk is a latent variable and y is the observed data:

z ∼ N (0,1)

x|z ∼ N (µ+ Λz,Ψ)

Parameters of our model are thus:

• µ ∈ Rn

• Λ ∈ Rn×k

• Diagonal matrix Ψ ∈ Rn×n

Note: Dimensionality reduction since k is chosen smaller than
n.
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Illustration

where y are the observations.
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Equivalent formulation

z ∼ N (0,1)

ε ∼ N (0,Ψ)

x = µ+ Λz + ε

where ε and z are independent.

Joint model:

[
z
x

]
∼ N (µzx,Σ)

Goal: Identify µzx and Σ.
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Factor Analysis

Joint model:

[
z
x

]
∼ N

([
0
µ

]
,

[
1 Λᵀ

Λ ΛΛᵀ + Ψ

])

Marginal Distribution

x ∼ N (µ,ΛΛᵀ + Ψ)

Log-Likelihood of parameters

l(µ,Λ,Ψ) = log
m∏
i=1

1

(2π)
n
2 |ΛΛᵀ + Ψ|

1
2

exp

(
−1

2
(x(i) − µ)ᵀ(ΛΛᵀ + Ψ)−1(x(i) − µ)

)
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EM for Factor Analysis

Maximum likelihood learning using EM:

• E-Step: qt+1 = p(z|x, θt)
• M-Step: θt+1 = arg maxθ

∑
n

∫
z q

t+1(z|x) logp(x, z|θ)dz

where θ = (µ,Λ,Ψ). Results for both steps:

• E-Step
qt+1 = p(z|x, θt) = N (z|m(i),V(i)) where
V(i) = (1 + ΛᵀΨ−1Λ)−1 and m(i) = V(i)ΛᵀΨ−1(x− µ).

• M-Step Λt+1 =
(∑

i x
(i)m(i)ᵀ

) (∑
i V

(i)
)−1

Ψt+1 = 1
ndiag

[∑
i x

(i)x(i)
ᵀ

+ Λt+1
∑

im
(i)x(i)

ᵀ
]
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Principal Component Analysis



Probabilistic Principal Component Analysis (PPCA)

In Factor Analysis, we can write the marginal density as:

x ∼ N (µ,ΛΛᵀ + Ψ)

where we assumed that Ψ was a diagonal matrix.

Now we make the further restriction that Ψ = σ2 i.e.:

z ∼ N (0,1)

x|z ∼ N (µ+ Λz, σ21)

where again µ is the mean vector, σ2 the global sensor noise
and Λ are the principal components.
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Likelihood

For both FA and PCA, the data model is Gaussian:

L(θ,D) = −N
2

log |ΛΛᵀ + Ψ| − 1

2

∑
n

(xn − µ)ᵀ(ΛΛᵀ + Ψ)−1(x(n) − µ)

=: −N
2

log |V| − 1

2
trace

[
V−1

∑
n

(x(n) − µ)(x(n) − µ)ᵀ

]
=:: −N

2
log |V| − 1

2
trace

[
V−1S

]
where V is the model covariance and S is the sample
covariance.
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EM for PCA

Recall from FA and setting Ψ = σ21:

• E-Step: qt+1 = p(z|x, θt)
• M-Step: θt+1 = arg maxθ

∑
n

∫
z q

t+1(z|x) logp(x, z|θ)dz

where θ = (µ,Λ, σ). Results for both steps:

• E-Step
qt+1 = p(z|x, θt) = N (z|m(i),V(i)) where
V(i) = (1 + σ−2ΛᵀΛ)−1 and m(i) = σ−2V(i)Λᵀ(x− µ).

• M-Step Λt+1 =
(∑

i x
(i)m(i)ᵀ

) (∑
i V

(i)
)−1

σ2t+1
= 1

ndiag
[∑

i x
(i)x(i)

ᵀ
+ Λt+1

∑
im

(i)x(i)
ᵀ
]
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Principal Component Analysis - Zero noise limit

• For σ2 → 0 we obtain the "classic" PCA.

• The maximum likelihood parameters are the same, the
only difference is the sensor noise σ2.

• In the "classic" setting, inference is easier since it
corresponds to orthogonal projection:

lim
σ2→0

Λᵀ(ΛΛᵀ + σ21)−1 = Λᵀ(ΛΛᵀ)−1 (1)

• Data compression:

µz|x = Λ†(x− µ) (2)

where Λ† is the pseudo-inverse.
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Interpretation of Differences

PPCA

• PCA looks for directions of large variance i.e. will identifiy
large noise directions

• For PCA the rotation is unimportant.

FA

• FA looks for directions of large correlation in data!

• Since Λ only appears in outer product ΛΛᵀ, the rotation of
data is important!

• Scale of data is unimportant.
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Latent Covariance

So far z ∼ N (0,1), now:

z ∼ N (0, P)

x|z ∼ N (µ+ Λz,Ψ)

The marginal probability is

x ∼ N (µ,ΛPΛᵀ + Ψ)

Decomposing P = EDEᵀ and setting Λ = ΛED
1
2 leads to

another identifiability issue between Λ and P. Thus:

• Set covariance P equal to identity (FA)

• Force columns of Λ to be orthonormal (PCA)
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Linear Autoencoder

Again: Given data points xi ∈ Rn, i = 1, · · · ,N

Goal: Find lower m-dimensional representation , m < n by
minimizing the reconstruction error

∑N
i ||xi − DCxi||2, where:

x
C→ z

D→ x̂

Problem: Find optimal C and D.
Solution: PCA!
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Problem
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Connection with State Space

Models



Connection with State Space Models

State space models are dynamical generalizations of FA
model.

xt = Axt−1 + Gwt

whee wt = N (0,Q)

• at each point in time t, we use a FA model to represent
the output

• State Space models are just sequential Factor Models

• C is the loading matrix, shared across all (xt, yt) pairs.

• We assume all data points lie in the same
low-dimensional space.
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Summary - so far

• Factor analysis implies latent variable is assumed to lie
on low-dimensional linear subspace

• Similar to mixture model, now just continuous

• Dimensionality reduction technique

• PCA, ICA, sensible PCA, linear autoencoder can all be
combined in one framework -> reference unifying review.

• For non-linear extensions, we use variational inference.
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Application to Images - Eigenfaces

Motivation Represent face images efficiently and capture
relevant information while removing nuisance factors like
lighting conditions, facial expression, occlusion etc.

Idea

• Given training set of N images, use PCA to form a basis of
K images, K«N.

• PCA for dimensionality reduction: Eigenface =
eigenvector of covariance function

• Use lower dimensional features e.g. for face classification

Literature
Sirovich and Kirby, Low-dimensional procedure for the
characterization of human face, 1987
Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive
Neuroscience, 1991
Turk and Pentland, Face Recognition using Eigenfaces, CVPR 1991
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Training*

*image from Turk and Pentland, Eigenfaces for Recognition, Journal of
Cognitive Neuroscience, 1991 20



Eigenface*

*image from Turk and Pentland, Eigenfaces for Recognition, Journal of
Cognitive Neuroscience, 1991
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Reconstruction*

*image from Turk and Pentland, Eigenfaces for Recognition, Journal of
Cognitive Neuroscience, 1991
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Exercise

Coding Exercise: Eigenfaces using CelebA dataset (> 200K
celebrity images).

Report and discuss (mean, speed, rotation, scaling, etc.)
using piazza.
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Next week

So far:

• Latent variable models

• Maximum Likelihood Estimation to find parameters

• Variational Inference for non-tractable models

Alternative: Implicit Models, which do not require a tractable
likelihood function.

Plan for next week:
Guest Lecture: Olivier Bachem - Generative Adversarial
Networks
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Questions?
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