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1. Factor Analysis
2. Principal Component Analysis

3. Connection with State Space Models



* Often there are some unknown underlying causes of the
data.

e Continuous factors which control the data we observe
data manifold (or subspace).

e Training continuous latent variable models is often called
dimensionality reduction, since there are typically many
fewer latent dimensions.

e Examples (see reference) PCA, Factor Analysis, ICA

¢ Reason for choosing continuous representation is often
motivated by efficiency.

¢ Mixture models uses discrete class variable: clustering

e Simplest case: linear subspace and underlying latent
variable with a Gaussian distribution.



Recall - Principal Component Analysis

Limitations of PCA

¢ No probabilistic model for observed data

¢ Difficulty to deal with missing data

* Naive PCA uses a simplistic distance function to assess
covariance.

Motivation for probabilistic PCA:

e address limitations
¢ allows to combine multiple PCA models as probabilistic
mixtures

“... the definition of a likelihood measure enables a
comparison with other probabilistic techniques, while
facilitating statistical testing and permitting the application of

"k

*Tipping and Bishop: Probabilistic Principal Component Analysis, Royal
Statistical Society: Series B, 1999 3



Factor Analysis



Factor Analysis Model

z € Rk is a latent variable and y is the observed data:

z~N(0,1)
X|z ~ N(p+ Nz, V)

Parameters of our model are thus:

s neR”
. /\eRnXk

e Diagonal matrix ¥ € R"*"

Note: Dimensionality reduction since k is chosen smaller than
n.



y3

where y are the observations.



Equivalent formulation

z~N(0,1)
e~ N(0,V)
X=p+Nz+c¢

where ¢ and z are independent.

Joint model:

| ~ M)

X

Goal: Identify uzx and X.



Factor Analysis

Joint model:

(B o))

Marginal Distribution

X ~ N (p, AT + W)
Log-Likelihood of parameters

Iy A, W) IogH
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EM for Factor Analysis

Maximum likelihood learning using EM:

+ E-Step: ¢'! = p(z|x, 6%)
« M-Step: 0" =argmaxg >, [,q""*(z|x) log p(x, z|6)dz

where 6 = (u, A\, V). Results for both steps:

* E-Step
qt+1 — p(z|x7 Ht) = j\/’(z|m(’), V(i)) where
VD = (14 ATWIA) "t and mO) = VOATU L (x — 1),

+ M-Step AL = (32, xOmOT) (52, v0)
witl = lgiag {Z, xDx(T 4 AL S mU x(")T}



Principal Component Analysis




Probabilistic Principal Component Analysis (PPCA)

In Factor Analysis, we can write the marginal density as:
X ~ N (p, ANT + W)

where we assumed that W was a diagonal matrix.

Now we make the further restriction that ¥ = o2 i.e.:

z~N(0,1)
x|z ~ N(p + Az,0°1)

where again p is the mean vector, o2 the global sensor noise
and A are the principal components.



Likelihood

For both FA and PCA, the data model is Gaussian:

£(6,D) =~ Tog |MT+ W] = 2 37 (x" = ) (MT + ) () — )

n

— N -1 n) T
== log |V| — ftrace Z — )

N 1
=i =5 log |V| — Strace [v1s]

where V is the model covariance and S is the sample
covariance.
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EM for PCA

Recall from FA and setting W = ¢21:

+ E-Step: ¢'! = p(z|x, 6%)

« M-Step: 0" =argmaxg >, [,q""*(z|x) log p(x, z|6)dz
where 6 = (u, A\, o). Results for both steps:

* E-Step
gttt = p(z|x, 6) = N(zlmD,v()) where
VO = (1+02ATA) "L and m) = 6 2VIAT(x — 1),

+ M-Step AL = (32, xOmOT) (5, v0)
02 = Ldiag |32, x0xOT 4 ALY, mOXOT|
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Principal Component Analysis - Zero noise limit

» For o2 — 0 we obtain the "classic" PCA.

¢ The maximum likelihood parameters are the same, the
only difference is the sensor noise 2.

¢ In the "classic" setting, inference is easier since it
corresponds to orthogonal projection:

lim AT(AAT + 021)~1 = AT(AAT) L (1)
020
e Data compression:

Hz|x = /\T(X — K (2)

where A' is the pseudo-inverse.
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Interpretation of Differences

PPCA

e PCA looks for directions of large variance i.e. will identifiy
large noise directions

¢ For PCA the rotation is unimportant.
FA

¢ FA looks for directions of large correlation in data!

¢ Since A only appears in outer product AAT, the rotation of
data is important!

e Scale of data is unimportant.
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Latent Covariance

So far z ~ N(0, 1), now:

z~N(0,P)
x|z ~ N(p+ Az, V)
The marginal probability is
X ~ N (p, APAT + W)
Decomposing P = EDET and setting A = AED? leads to
another identifiability issue between A and P. Thus:

e Set covariance P equal to identity (FA)
¢ Force columns of A to be orthonormal (PCA)
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Linear Autoencoder

Again: Given data points x; e R",i=1,--- /N

Goal: Find lower m-dimensional representation , m < n by

minimizing the reconstruction error 3 [|x; — DCx;|

2 where:
C _ D~
X=z3X
®c 0ol
®. . _ O
° KL
AL
. z 4\7 ]
o )

Problem: Find optimal C and D.

Solution: PCA!
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Connection with State Space
Models




Connection with State Space Models

State space models are dynamical generalizations of FA
model.

Xt = AXt_1 + Gwy

whee w: = N(0,0Q)

e at each pointin time t, we use a FA model to represent
the output

State Space models are just sequential Factor Models

C is the loading matrix, shared across all (x¢,y:) pairs.

¢ We assume all data points lie in the same
low-dimensional space.
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e Factor analysis implies latent variable is assumed to lie
on low-dimensional linear subspace

e Similar to mixture model, now just continuous
¢ Dimensionality reduction technique

e PCA, ICA, sensible PCA, linear autoencoder can all be
combined in one framework -> reference unifying review.

¢ For non-linear extensions, we use variational inference.
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Application to Images - Eigenfaces

Motivation Represent face images efficiently and capture
relevant information while removing nuisance factors like
lighting conditions, facial expression, occlusion etc.

Idea

e Given training set of N images, use PCA to form a basis of
Kimages, K«N.

* PCA for dimensionality reduction: Eigenface =
eigenvector of covariance function

¢ Use lower dimensional features e.g. for face classification

Literature

Sirovich and Kirby, Low-dimensional procedure for the
characterization of human face, 1987

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive
Neuroscience, 1991

Turk and Pentland, Face Recognition using Eigenfaces, CVPR 1991
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*image from Turk and Pentland, Eigenfaces for Recognition, Journal of

Cognitive Neuroscience, 1991 20



‘image from Turk and Pentland, Eigenfaces for Recognition, Journal of 21
Coanitive Netiroscience 19001



Reconstruction”

*image from Turk and Pentland, Eigenfaces for Recognition, Journal of
Cognitive Neuroscience, 1991
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Coding Exercise: Eigenfaces using CelebA dataset (> 200K
celebrity images).

Sample Images

Wearing
Hat

Eyeglasses

Bangs

Pointy
Nosc

Oval Face Smiling

Report and discuss (mean, speed, rotation, scaling, etc.)
using piazza.
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So far:

e Latent variable models
¢ Maximum Likelihood Estimation to find parameters

¢ Variational Inference for non-tractable models

Alternative: Implicit Models, which do not require a tractable
likelihood function.

Plan for next week:
Guest Lecture: Olivier Bachem - Generative Adversarial
Networks

24



Questions?
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