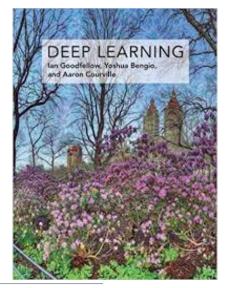
Probabilistic Graphical Models for Image Analysis - Lecture 9

Stefan Bauer 16th November 2018

Max Planck ETH Center for Learning Systems

- 1. Repetition
- 2. Kernel PCA
- 3. Autoencoding Variational Bayes

New Reference



^{*}Goodfellow, Bengio and Courville, Deep Learning https://www.deeplearningbook.org/

Repetition

 $z \in \mathbb{R}^k$ is a latent variable and y is the observed data:

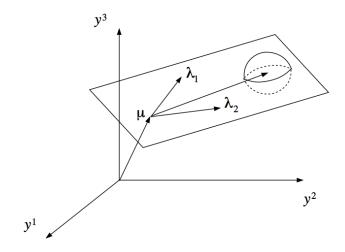
 $egin{aligned} & z \sim \mathcal{N}(0,1) \ & x | z \sim \mathcal{N}(\mu + \Lambda z, \Psi) \end{aligned}$

Parameters of our model are thus:

- $\mu \in \mathbb{R}^n$
- $\Lambda \in \mathbb{R}^{n \times k}$
- Diagonal matrix $\Psi \in \mathbb{R}^{n \times n}$

Note: Dimensionality reduction since *k* is chosen smaller than *n*.

Illustration



where y are the observations.

Equivalent formulation

$$egin{aligned} & z \sim \mathcal{N}(0,1) \ & arepsilon \sim \mathcal{N}(0,\Psi) \ & x = \mu + \Lambda z + arepsilon \end{aligned}$$

where ε and z are independent.

Joint model:

$$\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N}(\mu_{zx}, \Sigma)$$

Goal: Identify μ_{zx} and Σ .

Joint model:

$$\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ \mu \end{bmatrix}, \begin{bmatrix} 1 & \Lambda^{\mathsf{T}} \\ \Lambda & \Lambda\Lambda^{\mathsf{T}} + \Psi \end{bmatrix} \right)$$

Marginal Distribution

$$\mathbf{x} \sim \mathcal{N}(\mu, \Lambda \Lambda^\intercal + \Psi)$$

Log-Likelihood of parameters

$$I(\mu,\Lambda,\Psi) = \log \prod_{i=1}^m \frac{1}{(2\pi)^{\frac{n}{2}} |\Lambda\Lambda^\intercal + \Psi|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{(i)} - \mu)^\intercal (\Lambda\Lambda^\intercal + \Psi)^{-1}(x^{(i)} - \mu)\right)$$

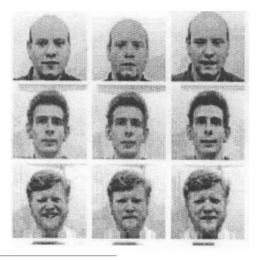
Motivation Represent face images efficiently and capture relevant information while removing nuisance factors like lighting conditions, facial expression, occlusion etc.

Idea

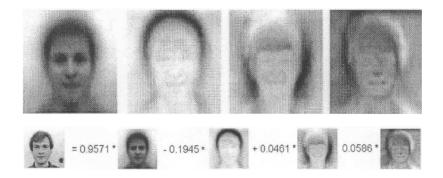
- Given training set of N images, use PCA to form a basis of K images, K«N.
- PCA for dimensionality reduction: Eigenface = eigenvector of covariance function
- Use lower dimensional features e.g. for face classification

Literature

Sirovich and Kirby, Low-dimensional procedure for the characterization of human face, 1987 Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, 1991 Turk and Pentland, Face Recognition using Eigenfaces, CVPR 1991

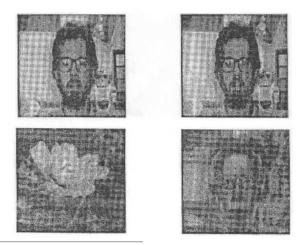


^{*}image from supplement Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, 1991, http://www.vision.jhu.edu/ teaching/vision08/Handouts/case_study_pcal.pdf



^{*}image from supplement Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, 1991, http://www.vision.jhu.edu/ teaching/vision08/Handouts/case_study_pcal.pdf

Reconstruction*



^{*}image from supplement Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, 1991, http://www.vision.jhu.edu/ teaching/vision08/Handouts/case_study_pcal.pdf

Recall Exercise

Coding Exercise: Eigenfaces using CelebA dataset (> 200K celebrity images).

Sample Images

Report and discuss (mean, speed, rotation, scaling, etc.) using piazza.

Solution to exercise

true: Rumsfeld true: Rumsfeld

predicted: Powell Powell true:

predicted: Bush

true: Blair

predicted: Bush

true: Bush

predicted: Sharon Sharon true:

predicted: Powell

true: Powell

predicted: Bush true:

predicted: Rumsfeld predicted: Rumsfeld

Bush

predicted: Chavez

true: Chavez

true:

predicted: Bush

predicted: Rumsfeld eigenface 4 true: Blair

predicted: Rumsfeld Powell

eigenface 0

eigenface 1

eigenface 5

eigenface 2

eigenface 6

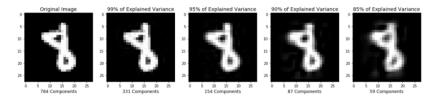
Code: http://scikit-learn.sourceforge.net/0.8/auto_ examples/applications/face_recognition.html

eigenface 3

eigenface 7

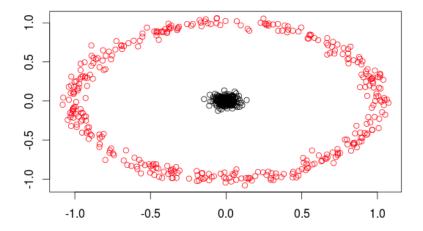
Problem Model Selection

Question: How to choose the number of components?



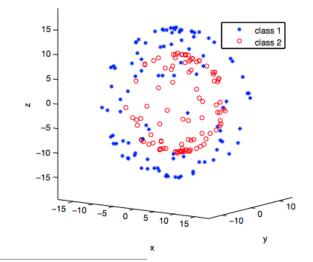
- Number of components might be constrained by problem goal, computational or storage resources e.g. typically choose only 2 or 3 components for visualization problems.
- Eigenvalues magnitudes determine explained variance (recall Lec. 7). Search for elbow criterion.
- Each spring, lecture Statistical Learning Theory https://ml2.inf.ethz.ch/courses/slt/.

Problem Non-linear Structure vs Random



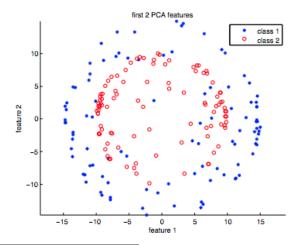
Kernel PCA

Kernel PCA^{*}



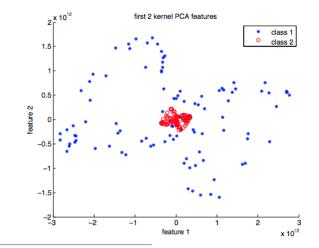
*Wang, Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models, 2012 https://arxiv.org/pdf/1207.3538.pdf

Solution using PCA^{*}



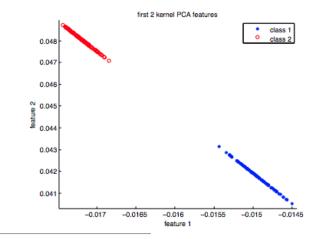
^{*}Wang, Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models, 2012 https://arxiv.org/pdf/1207.3538.pdf

Solution using Kernel PCA (polynomial)^{*}



^{*}Wang, Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models, 2012 https://arxiv.org/pdf/1207.3538.pdf

Solution using Kernel PCA (Gaussian)^{*}



^{*}Wang, Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models, 2012 https://arxiv.org/pdf/1207.3538.pdf Original Data

(238567890

Data with one random noise initialization

Linear PCA

Kernel PCA

Autoencoding Variational Bayes

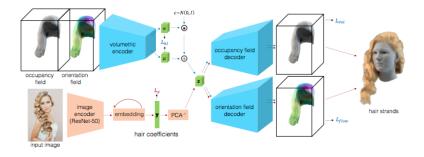
Implicit probabilistic models

- Do not specify the distribution of the data itself but rather a stochastic process which simulates the data
- Since they do not specify a distribution, they do not require a tractable likelihood
- One example are GAN's (last week)

Explicit probabilistic models

- Specify model and use maximum likelihood
- Everything we have seen so far
- One example are Variational Autoencoders (today).

Saito et.al, 3D Hair Synthesis Using Volumetric Variational Autoencoders, SIGGRAPH Asia 2018



https://www.youtube.com/watch?v=UT2EiLG4Mrg

 \pmb{x} observations, \pmb{Z} hidden variables, α additional parameters

$$p(z \mid x, \alpha) = \frac{p(z, x \mid \alpha)}{\int p(z, x \mid \alpha)}$$
(1)

Idea: Pick family of distributions over latent variables with its own variational parameter

$$q(z \mid \nu) = \ldots?$$

and find variational parameters ν such that q and p are "close".

$$\log p(x) = \log \int_{Z} p(z, x) =$$

$$= \log \int_{Z} p(z, x) \frac{q(z)}{q(z)}$$

$$= \log \mathbb{E}_{q} \left(\frac{p(x, Z)}{q(Z)} \right)$$

$$\geq \mathbb{E}_{q} \left(\log p(x, Z) \right) - \mathbb{E}_{q} \left(\log q(Z) \right)$$

Proposal: Choose/design variational family *Q* such that the expectations are easily computable.

$$\begin{aligned} \operatorname{KL}[q(z) \mid\mid p(z \mid y)] &= \mathbb{E}_q \left[\log \frac{q(Z)}{p(Z \mid y)} \right] \\ &= \mathbb{E}_q[\log q(Z)] - \mathbb{E}_q[\log p(Z \mid y)] \\ &= \mathbb{E}_q[\log q(Z)] - \mathbb{E}_q[\log p(Z, y)] + \log p(y) \\ &= - \left(\mathbb{E}_q[\log p(Z, y)] - \mathbb{E}_q[\log q(Z)] \right) + \log p(y) \end{aligned}$$

Difference between KL and ELBO is precisely the log normalizer, which does not depend on q and is bounded by the ELBO.

Mean-field: $q(z,\beta) = q_{\lambda}(\beta) \prod_{i=1}^{k} q_{\varphi_i}(z_i)$

- λ global variational parameter
- φ local variational parameter

Local update $\varphi_i \leftarrow \mathbb{E}_{\lambda}[\eta_l(\beta, x_i)]$

Global update: $\lambda \leftarrow \mathbb{E}_{\varphi}[\eta_g(x, z)]$

Note: Coordinate ascent iterates between local and global updates.

Summary

We use variational inference to approximate the posterior distribution

 $\log p(x,\theta) = \text{ELBO}(q,\theta) + \text{KL}(q(z)||p(z|x,\theta)),$

$$\log p(x,\theta) \geq \mathbb{E}_q[\log p(Z,x)] - \mathbb{E}_q[\log q(Z)]$$

To optimize the lower bound, we can use coordinate ascent!

Problems:

- In each iteration we go over all the data!
- Computing the gradient of the expectations above.

Solution: Stochastic and Black Box Variational Inference

Black-Box Stochastic Variational Inference in Five Lines of Python

David Duvenaud dduvenaud@seas.harvard.edu Harvard University Ryan P. Adams rpa@seas.harvard.edu Harvard University

Abstract

Several large software engineering projects have been undertaken to support black-box inference methods. In contrast, we emphasize how easy it is to construct scalable and easy-to-use automatic inference methods using only automatic differentiation. We present a small function which computes stochastic gradients of the evidence lower bound for any differentiable posterior. As an example, we perform stochastic variational inference in a deep Bayesian neural network.

$\text{ELBO} = \mathbb{E}_{q_{\nu}}[\log p_{\theta}(z, x)] - \mathbb{E}_{q}[\log q_{\nu}(z)]$

where ν are the parameters of the variational distribution and θ the parameters of the model (as before).

Aim: Maximize the ELBO

Problem: Need unbiased estimates of $\nabla_{\nu,\theta}$ ELBO.

Optimizing the ELBO

 $\mathbb{E}_{q(\lambda)}[\log p(z, x) - \log q(z)] =: \mathbb{E}[g(z)]$ **Exercise**: $\nabla_{\lambda} \text{ELBO} = \nabla_{\lambda} \mathbb{E}[g(z)] = \mathbb{E}[g(z)\nabla \log q(z)] + \mathbb{E}[\nabla g(z)]$ where $\nabla \log q(z)$ is called the *score function*.

Note: The expectation of the score function is zero for any *q* i.e.

 $\mathbb{E}_q[\nabla \log q(z)] = 0$

Thus, to compute a noisy gradient of the ELBO

- sample from q(z)
- evaluate $\nabla \log q(z)$
- evaluate $\log p(x, z)$ and $\log q(z)$

Algorithm 1 Black Box Variational Inference

- 1: **Input:** data x, model p(x,z), variational family $q_{\varphi}(z)$,
- 2: while Stopping criteria is not fulfilled do
- 3: Draw *L* samples $z_l \sim q_{\varphi}(z)$
- 4: Update variational paramater using the collected samples

$$\varphi \leftarrow \varphi + \delta_t \frac{1}{L} \sum_{l=1}^{L} \nabla \log q(z_l) (\log p(x, z_l) - \log q(z_l))$$

5: Check step size and update if required!

6: end while

Note: Active research area (problem) is the reduction of the variance of the noisy gradient estimator.

Simplified notation:

 $\nabla_{\nu}\mathbb{E}_{q_{\nu}}[f_{\nu}(z)]$

Assume that there exists a fixed reparameterization such that

$$\mathbb{E}_{q_{\nu}}[f_{\nu}(z)] = \mathbb{E}_{q}[f_{\nu}(g_{\nu}(\varepsilon))]$$

where the expectation on the right does now not depend on $\boldsymbol{\nu}.$ Then

$$\nabla_{\nu}\mathbb{E}_{q}[f_{\nu}(g_{\nu}(\varepsilon))] = \mathbb{E}_{q}[\nabla_{\nu}f_{\nu}(g_{\nu}(\varepsilon))]$$

Solution: Obtain unbiased estimates by taking a Monte Carlo estimate of the expectation on the right.

Comparison

Score Function (reinforce)

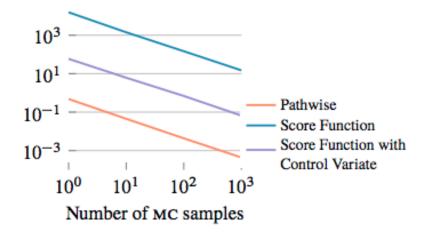
- Differentiates the density $abla_
 u q(z,
 u)$
- Works for discrete and continuous models
- Works for large class of variational approximations
- Variance is a big issue

Pathwise (reparameterization)

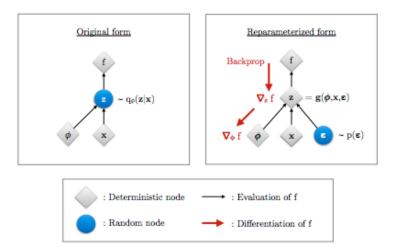
- Differentiates the function $\nabla_{z}[\log p(x,z) \log q(z,\nu)]$
- requires differentiable models
- requires variational models to have special form
- In practice better behaved variance

Appendix D in https://arxiv.org/pdf/1401.4082.pdf provides a discussion about variance of both approaches.

Variance Comparison^{*}



*NIPS Variational Inference Tutorial 2016
https://media.nips.cc/Conferences/2016/Slides/6199-Slides.pdf



^{*}from D. Kignma, Variational Inference & Deep Learning: A New Synthesis, PhD Thesis 2017 https://pure.uva.nl/ws/files/17891313/Thesis.pdf

^{*}Karras et.al. Progressive Growing of GANs for improved Quality, Stability, and Variation, ICLR 2018 https://arxiv.org/pdf/1710.10196.pdf

*Brundage et.al. 2018 https://img1.wsimg.com/blobby/go/ 3d82daa4-97fe-4096-9c6b-376b92c619de/downloads/1c6q2kc4v_ 50335.pdf

Progress GANs vs. State of the art VAE

$\mathbf{GAN}^{\ *}$

2014

2015

2016

2017

Recent VAE*

*Brundage et.al. 2018 https://arxiv.org/pdf/1802.07228.pdf
*Zhao et.al 2017 https://arxiv.org/pdf/1702.08658.pdf

Summary

Variational Autoencoders

- for image generation, necessity to reconstruct each pixel
- reparametrization is not applicable to discrete latent variables
- usually only allows to use a fixed standard normal as a prior
- images are often blurry compared to high-fidelity samples generated by GANs
- allows for efficient Bayesian inference

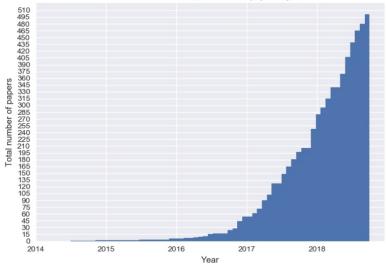
Generative Adversarial Networks

- Instability of training
- mode collapse i.e. generated samples are often only from a few modes of the data distribution
- only visual inspection since GANs do not support inference (can additionally train an inference network)
- does not support discrete visible variables

Generally: We are unable to control the attributes of generated samples e.g. aim for regularization which enforces disentangled latent codes.

Gan Zoo^{*}

Cumulative number of named GAN papers by month



*https://github.com/hindupuravinash/the-gan-zoo

So far missing

- Wake-Sleep Algorithm
- Independent Components
- Combination of State Space Models with Autoencoder
- Identification of number of latent components; Bayesian non-parametrics

Plan for Exercise on Tuesday:

Different Derivation based on Tutorial on Variational Autoencoders https://arxiv.org/abs/1606.05908

Questions?