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New Reference *

*Goodfellow, Bengio and Courville, Deep Learning
https://www.deeplearningbook.org/
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Repetition



Factor Analysis Model

z ∈ Rk is a latent variable and y is the observed data:

z ∼ N (0,1)

x|z ∼ N (µ+ Λz,Ψ)

Parameters of our model are thus:

• µ ∈ Rn

• Λ ∈ Rn×k

• Diagonal matrix Ψ ∈ Rn×n

Note: Dimensionality reduction since k is chosen smaller than
n.
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Illustration

where y are the observations.
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Equivalent formulation

z ∼ N (0,1)

ε ∼ N (0,Ψ)

x = µ+ Λz + ε

where ε and z are independent.

Joint model:

[
z
x

]
∼ N (µzx,Σ)

Goal: Identify µzx and Σ.
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Factor Analysis

Joint model:

[
z
x

]
∼ N

([
0
µ

]
,

[
1 Λᵀ

Λ ΛΛᵀ + Ψ

])

Marginal Distribution

x ∼ N (µ,ΛΛᵀ + Ψ)

Log-Likelihood of parameters

l(µ,Λ,Ψ) = log
m∏
i=1

1

(2π)
n
2 |ΛΛᵀ + Ψ|

1
2

exp

(
−1

2
(x(i) − µ)ᵀ(ΛΛᵀ + Ψ)−1(x(i) − µ)

)
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Application to Images - Eigenfaces

Motivation Represent face images efficiently and capture
relevant information while removing nuisance factors like
lighting conditions, facial expression, occlusion etc.

Idea

• Given training set of N images, use PCA to form a basis of
K images, K«N.

• PCA for dimensionality reduction: Eigenface =
eigenvector of covariance function

• Use lower dimensional features e.g. for face classification

Literature
Sirovich and Kirby, Low-dimensional procedure for the
characterization of human face, 1987
Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive
Neuroscience, 1991
Turk and Pentland, Face Recognition using Eigenfaces, CVPR 1991
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Data *

*image from supplement Turk and Pentland, Eigenfaces for Recognition,
Journal of Cognitive Neuroscience, 1991, http://www.vision.jhu.edu/
teaching/vision08/Handouts/case_study_pca1.pdf
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Basis*

*image from supplement Turk and Pentland, Eigenfaces for Recognition,
Journal of Cognitive Neuroscience, 1991, http://www.vision.jhu.edu/
teaching/vision08/Handouts/case_study_pca1.pdf
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Reconstruction*

*image from supplement Turk and Pentland, Eigenfaces for Recognition,
Journal of Cognitive Neuroscience, 1991, http://www.vision.jhu.edu/
teaching/vision08/Handouts/case_study_pca1.pdf
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Recall Exercise

Coding Exercise: Eigenfaces using CelebA dataset (> 200K
celebrity images).

Report and discuss (mean, speed, rotation, scaling, etc.)
using piazza.
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Solution to exercise

Code: http://scikit-learn.sourceforge.net/0.8/auto_

examples/applications/face_recognition.html
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Problem Model Selection

Question: How to choose the number of components?

• Number of components might be constrained by problem
goal, computational or storage resources e.g. typically
choose only 2 or 3 components for visualization problems.

• Eigenvalues magnitudes determine explained variance
(recall Lec. 7). Search for elbow criterion.

• Each spring, lecture Statistical Learning Theory
https://ml2.inf.ethz.ch/courses/slt/.
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Problem Non-linear Structure vs Random
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Kernel PCA



Kernel PCA*

*Wang, Kernel Principal Component Analysis and its Applications in Face
Recognition and Active Shape Models, 2012
https://arxiv.org/pdf/1207.3538.pdf
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Solution using PCA*

*Wang, Kernel Principal Component Analysis and its Applications in Face
Recognition and Active Shape Models, 2012
https://arxiv.org/pdf/1207.3538.pdf 16

https://arxiv.org/pdf/1207.3538.pdf


Solution using Kernel PCA (polynomial)*

*Wang, Kernel Principal Component Analysis and its Applications in Face
Recognition and Active Shape Models, 2012
https://arxiv.org/pdf/1207.3538.pdf
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Solution using Kernel PCA (Gaussian)*

*Wang, Kernel Principal Component Analysis and its Applications in Face
Recognition and Active Shape Models, 2012
https://arxiv.org/pdf/1207.3538.pdf

18

https://arxiv.org/pdf/1207.3538.pdf


Robustness to noise

Original Data

Data with one random noise initialization

Linear PCA

Kernel PCA
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Autoencoding Variational

Bayes



Deep Generative Models

Implicit probabilistic models

• Do not specify the distribution of the data itself but rather
a stochastic process which simulates the data

• Since they do not specify a distribution, they do not
require a tractable likelihood

• One example are GAN’s (last week)

Explicit probabilistic models

• Specify model and use maximum likelihood

• Everything we have seen so far

• One example are Variational Autoencoders (today).
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Motivation: Recent Examples using VAE Structures

Saito et.al, 3D Hair Synthesis Using Volumetric Variational
Autoencoders, SIGGRAPH Asia 2018

https://www.youtube.com/watch?v=UT2EiLG4Mrg
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Framework

x observations, Z hidden variables, α additional parameters

p(z | x, α) =
p(z, x | α)∫
p(z, x | α)

(1)

Idea: Pick family of distributions over latent variables with its
own variational parameter

q(z | ν) = . . .?

and find variational parameters ν such that q and p are
"close".
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Using Jensen’s inequality to obtain a lower bound

logp(x) = log

∫
Z
p(z, x) =

= log

∫
Z
p(z, x)

q(z)

q(z)

= log Eq

(
p(x,Z)

q(Z)

)
≥ Eq (logp(x,Z))− Eq (logq(Z))

Proposal: Choose/design variational family Q such that the
expectations are easily computable.
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Relation with KL

KL[q(z) || p(z | y)] = Eq

[
log

q(Z)

p(Z | y)

]
= Eq[logq(Z)]− Eq[logp(Z | y)]

= Eq[logq(Z)]− Eq[logp(Z, y)] + logp(y)

= − (Eq[logp(Z, y)]− Eq[logq(Z)]) + logp(y)

Difference between KL and ELBO is precisely the log
normalizer, which does not depend on q and is bounded by
the ELBO.
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Mean-field for conjugates

Mean-field: q(z, β) = qλ(β)
∏k

i=1 qϕi(zi)

• λ global variational parameter

• ϕ local variational parameter

Local update ϕi ← Eλ[ηl(β, xi)]

Global update: λ← Eϕ[ηg(x, z)]

Note: Coordinate ascent iterates between local and global
updates.
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Summary

We use variational inference to approximate the posterior
distribution

logp(x, θ) = ELBO(q, θ) + KL(q(z)||p(z|x, θ)),

logp(x, θ) ≥ Eq[logp(Z, x)]− Eq[logq(Z)]

To optimize the lower bound, we can use coordinate ascent!

Problems:

• In each iteration we go over all the data!
• Computing the gradient of the expectations above.

Solution: Stochastic and Black Box Variational Inference
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Do not worry - It is easy to use!

27



Gradient Estimates of the ELBO

ELBO = Eqν [logpθ(z, x)]− Eq[logqν(z)]

where ν are the parameters of the variational distribution and
θ the parameters of the model (as before).

Aim: Maximize the ELBO

Problem: Need unbiased estimates of ∇ν,θELBO.
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Optimizing the ELBO

Eq(λ)[logp(z, x)− logq(z)] =: E[g(z)]

Exercise:
∇λELBO = ∇λE[g(z)] = E[g(z)∇ logq(z)] + E[∇g(z)]

where ∇ logq(z) is called the score function.

Note: The expectation of the score function is zero for any q
i.e.

Eq[∇ logq(z)] = 0

Thus, to compute a noisy gradient of the ELBO

• sample from q(z)

• evaluate ∇ logq(z)

• evaluate logp(x, z) and logq(z)
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Algorithm

Algorithm 1 Black Box Variational Inference

1: Input: data x, model p(x,z), variational family qϕ(z),
2: while Stopping criteria is not fulfilled do
3: Draw L samples zl ∼ qϕ(z)

4: Update variational paramater using the collected samples

ϕ← ϕ+ δt
1

L

L∑
l=1

∇ logq(zl)(logp(x, zl)− logq(zl))

5: Check step size and update if required!
6: end while

Note: Active research area (problem) is the reduction of the
variance of the noisy gradient estimator.
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Reparametrization trick

Simplified notation:

∇νEqν [fν(z)]

Assume that there exists a fixed reparameterization such that

Eqν [fν(z)] = Eq[fν(gν(ε))]

where the expectation on the right does now not depend on ν.
Then

∇νEq[fν(gν(ε))] = Eq[∇νfν(gν(ε))]

Solution: Obtain unbiased estimates by taking a Monte Carlo
estimate of the expectation on the right.
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Comparison

Score Function (reinforce)

• Differentiates the density ∇νq(z, ν)

• Works for discrete and continuous models

• Works for large class of variational approximations

• Variance is a big issue

Pathwise (reparameterization)

• Differentiates the function ∇z[logp(x, z)− logq(z, ν)]

• requires differentiable models

• requires variational models to have special form

• In practice better behaved variance

Appendix D in https://arxiv.org/pdf/1401.4082.pdf
provides a discussion about variance of both approaches.
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Variance Comparison*

*NIPS Variational Inference Tutorial 2016
https://media.nips.cc/Conferences/2016/Slides/6199-Slides.pdf
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Visualization *

*from D. Kignma, Variational Inference & Deep Learning: A New Synthesis,
PhD Thesis 2017 https://pure.uva.nl/ws/files/17891313/Thesis.pdf 34
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GANs *

*Karras et.al. Progressive Growing of GANs for improved Quality, Stability,
and Variation, ICLR 2018 https://arxiv.org/pdf/1710.10196.pdf
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GAN Progress*

*Brundage et.al. 2018 https://img1.wsimg.com/blobby/go/
3d82daa4-97fe-4096-9c6b-376b92c619de/downloads/1c6q2kc4v_

50335.pdf
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Progress GANs vs. State of the art VAE

GAN *

Recent VAE*

*Brundage et.al. 2018 https://arxiv.org/pdf/1802.07228.pdf
*Zhao et.al 2017 https://arxiv.org/pdf/1702.08658.pdf
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Summary

Variational Autoencoders

• for image generation, necessity to reconstruct each pixel

• reparametrization is not applicable to discrete latent variables

• usually only allows to use a fixed standard normal as a prior

• images are often blurry compared to high-fidelity samples
generated by GANs

• allows for efficient Bayesian inference

Generative Adversarial Networks

• Instability of training

• mode collapse i.e. generated samples are often only from a few
modes of the data distribution

• only visual inspection since GANs do not support inference (can
additionally train an inference network)

• does not support discrete visible variables

Generally: We are unable to control the attributes of generated sam-
ples e.g. aim for regularization which enforces disentangled latent
codes.
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Gan Zoo*

*https://github.com/hindupuravinash/the-gan-zoo
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Next week

So far missing

• Wake-Sleep Algorithm

• Independent Components

• Combination of State Space Models with Autoencoder

• Identification of number of latent components; Bayesian
non-parametrics

Plan for Exercise on Tuesday:

Different Derivation based on Tutorial on Variational
Autoencoders https://arxiv.org/abs/1606.05908
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Questions?
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