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New Reference *

*Goodfellow, Bengio and Courville, Deep Learning
https://www.deeplearningbook.org/


https://www.deeplearningbook.org/
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Factor Analysis Model

z € Rk is a latent variable and y is the observed data:

z~N(0,1)
X|z ~ N(p+ Nz, V)

Parameters of our model are thus:

s neR”
. /\eRnXk

e Diagonal matrix ¥ € R"*"

Note: Dimensionality reduction since k is chosen smaller than
n.



y3

where y are the observations.



Equivalent formulation

z~N(0,1)
e~ N(0,V)
X=p+Nz+c¢

where ¢ and z are independent.

Joint model:

| ~ M)

X

Goal: Identify uzx and X.



Factor Analysis

Joint model:

(B o))

Marginal Distribution

X ~ N (p, AT + W)
Log-Likelihood of parameters
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Application to Images - Eigenfaces

Motivation Represent face images efficiently and capture
relevant information while removing nuisance factors like
lighting conditions, facial expression, occlusion etc.

Idea

e Given training set of N images, use PCA to form a basis of
Kimages, K«N.

* PCA for dimensionality reduction: Eigenface =
eigenvector of covariance function

¢ Use lower dimensional features e.g. for face classification

Literature

Sirovich and Kirby, Low-dimensional procedure for the
characterization of human face, 1987

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive
Neuroscience, 1991

Turk and Pentland, Face Recognition using Eigenfaces, CVPR 1991



*image from supplement Turk and Pentland, Eigenfaces for Recognition,
Journal of Cognitive Neuroscience, 1991, http://www.vision. jhu.edu/
teaching/vision08/Handouts/case_study_pcal.pdf


http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf
http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf

%

‘image from supplement Turk and Pentland, Eigenfaces for Recognition,
Journal of Cognitive Neuroscience, 1991, http://www.vision. jhu.edu/
teaching/vision08/Handouts/case_study_pcal.pdf


http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf
http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf

Reconstruction”

‘image from supplement Turk and Pentland, Eigenfaces for Recognition,
Journal of Cognitive Neuroscience, 1991, http://www.vision. jhu.edu/
teaching/vision08/Handouts/case_study_pcal.pdf
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http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf
http://www.vision.jhu.edu/teaching/vision08/Handouts/case_study_pca1.pdf

Recall Exercise

Coding Exercise: Eigenfaces using CelebA dataset (> 200K
celebrity images).

Sample Images

Eyeglasses

Bangs

Oval Face Smiling

Report and discuss (mean, speed, rotation, scaling, etc.)
using piazza.
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Solution to exercise
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Code: http://scikit-learn.sourceforge.net/0.8/auto_
examples/applications/face_recognition.html
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http://scikit-learn.sourceforge.net/0.8/auto_examples/applications/face_recognition.html 
http://scikit-learn.sourceforge.net/0.8/auto_examples/applications/face_recognition.html 

Problem Model Selection

Question: How to choose the number of components?

Onginal Image 99% of Explained Variance 95% of Explained Vanance BO % of Explained Variance B': % of Explained Variance

104 (n\uunp o l(umpm ents ® 154 rnpun nts & co omponents 53 Com ponen s

* Number of components might be constrained by problem
goal, computational or storage resources e.g. typically
choose only 2 or 3 components for visualization problems.

e Eigenvalues magnitudes determine explained variance
(recall Lec. 7). Search for elbow criterion.

e Each spring, lecture Statistical Learning Theory
https://ml2.inf.ethz.ch/courses/slt/.
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Problem Non-linear Structure vs Random
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Kernel PCA




Kernel PCA"
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*Wang, Kernel Principal Component Analysis and its Applications in Face
Recognition and Active Shape Models, 2012
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Solution using PCA"
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*Wang, Kernel Principal Component Analysis and its Applications in Face
Recognition and Active Shape Models, 2012
https://arxiv.org/pdf/1207.3538.pdf 16
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Solution using Kernel PCA (polynomial)”
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*Wang, Kernel Principal Component Analysis and its Applications in Face
Recognition and Active Shape Models, 2012
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Solution using Kernel PCA (Gaussian)”

first 2 kernal PCA features
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*Wang, Kernel Principal Component Analysis and its Applications in Face
Recognition and Active Shape Models, 2012
https://arxiv.org/pdf/1207.3538.pdf
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Robustness to noise

Original Data
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Data with one random noise initialization
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Autoencoding Variational
Bayes




Deep Generative Models

Implicit probabilistic models
* Do not specify the distribution of the data itself but rather
a stochastic process which simulates the data

e Since they do not specify a distribution, they do not
require a tractable likelihood

* One example are GAN’s (last week)
Explicit probabilistic models

¢ Specify model and use maximum likelihood
e Everything we have seen so far
* One example are Variational Autoencoders (today).
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Motivation: Recent Examples using VAE Structures

Saito et.al, 3D Hair Synthesis Using Volumetric Variational
Autoencoders, SIGGRAPH Asia 2018

occupancy field
decodar
eocupancy  orientation
field field — l
Loy ’
SN
image orientation field -
encader + embedding ¥+ PCA decoder 4 it strands
(ResMet-50) i d .
hair coefficients

-a-F
input image

https://www.youtube.com/watch?v=UT2EiLG4Mrg
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X observations, Z hidden variables, « additional parameters

Idea: Pick family of distributions over latent variables with its
own variational parameter

q(z|v)=..7

and find variational parameters v such that g and p are
"close".
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Using Jensen’s inequality to obtain a lower bound

log p(x) = log /Zp(z, X) =

> Eq (log p(x,2)) — Eq (log q(2))

Proposal: Choose/design variational family Q such that the
expectations are easily computable.
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Relation with KL

KLlg(2) || p(z | y)] = Eq {'09 p(qZ(Z))/J

= Eqllog q(Z2)] — Eqllogp(Z | y)]
= E4[log g(2)] — Eg[log p(Z,y)] + log p(y)
= — (Eqllog p(Z, y)] — Eqllog q(2)]) + log p(y)

Difference between KL and ELBO is precisely the log
normalizer, which does not depend on g and is bounded by
the ELBO.
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Mean-field for conjugates

Mean-field: g(z, ) = q,(8) [1; 4, (2)

¢ ) global variational parameter

* ¢ local variational parameter

Local update ; < Ex[n/(5, x;)]
Global update: )\ «— E_[1,(x, 2)]

Note: Coordinate ascent iterates between local and global
updates.

25



We use variational inference to approximate the posterior
distribution

log p(x,0) = ELBO(q, 0) + KL(q(2)||p(z|x, 0)),

log p(x,0) > Eqllog p(Z, x)] — Eq4[log q(Z)]

To optimize the lower bound, we can use coordinate ascent!
Problems:

* In each iteration we go over all the data!
¢ Computing the gradient of the expectations above.

Solution: Stochastic and Black Box Variational Inference
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Do not worry - It is easy to use!

Black-Box Stochastic Variational Inference
in Five Lines of Python

David Duvenaud Ryan P. Adams
dduvenaud@seas.harvard.edu rpa@seas.harvard.edu
Harvard University Harvard University
Abstract

Several large software engineering projects have been undertaken to support
black-box inference methods. In contrast, we emphasize how easy it is to con-
struct scalable and easy-to-use automatic inference methods using only automatic
differentiation. We present a small function which computes stochastic gradients
of the evidence lower bound for any differentiable posterior. As an example, we
perform stochastic variational inference in a deep Bayesian neural network.
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Gradient Estimates of the ELBO

ELBO = Eg, [log py(z, x)] — Eq[log q.(z)]

where v are the parameters of the variational distribution and
f the parameters of the model (as before).
Aim: Maximize the ELBO

Problem: Need unbiased estimates of V, yELBO.
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Optimizing the ELBO

Eqnllog p(z,x) — log q(2)] =: E[g(2)]

Exercise:
V,ELBO = V,E[g(2)] = E[9(2)V log q(2)] + E[Vg(2)]

where V log q(z) is called the score function.

Note: The expectation of the score function is zero for any g
i.e.

Eq[VIogq(z)] =0

Thus, to compute a noisy gradient of the ELBO

» sample from q(2)
* evaluate Vlogq(z)
* evaluate log p(x, z) and log q(z)
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Algorithm 1 Black Box Variational Inference

1: Input: data x, model p(x,z), variational family g,(z),

2: while Stopping criteria is not fulfilled do

3:  Draw L samples z ~ q,(2)

4 Update variational paramater using the collected samples

L
1
p 49+ 0c; Y Viogq(z)(logp(x. 27) ~ logq(z))
=1

5: Check step size and update if required!
6: end while

Note: Active research area (problem) is the reduction of the
variance of the noisy gradient estimator.
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Reparametrization trick

Simplified notation:

VuEq, [ (2)]
Assume that there exists a fixed reparameterization such that

Eq, [, (2)] = Eqlf.(9.(¢))]

where the expectation on the right does now not depend on v.
Then

VEqlfo(9u(€))] = Eq[Vuf(94(¢))]

Solution: Obtain unbiased estimates by taking a Monte Carlo
estimate of the expectation on the right.
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Comparison

Score Function (reinforce)

« Differentiates the density V,q(z,v)

e Works for discrete and continuous models

e Works for large class of variational approximations
e Variance is a big issue

Pathwise (reparameterization)

« Differentiates the function V,[log p(x,z) — log q(z, v)]
e requires differentiable models

e requires variational models to have special form

e In practice better behaved variance

Appendix D in https://arxiv.org/pdf/1401.4082.pdf
provides a discussion about variance of both approaches.
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Variance Comparison”

lﬂj _
10! F%h
10~ H“x Pathwise
—— Score Function
10-3 - Secore Function with

[ Control Variate
10 10" 102 10°
Number of MC samples

*NIPS Variational Inference Tutorial 2016
https://media.nips.cc/Conferences/2016/Slides/6199-Slides.pdf
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Visualization *

= qe(z(x]

¢ * Vol < @ “ X = ple]

: Determinkstic node = : Evaluation of {

. : Random node — . Differentiazion of {

“from D. Kignma, Variational Inference & Deep Learning: A New Synthesis,

PhD Thesis 2017 https://pure.uva.nl/ws/files/17891313/Thesis.pdf 34
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*Karras et.al. Progressive Growing of GANs for improved Quality, Stability,
and Variation, ICLR 2018 https://arxiv.org/pdf/1710.10196.pdf
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GAN Progress”

‘Brundage et.al. 2018 https://imgl.wsimg.com/blobby/go/
3d82daa4-97fe-4096-9cbb-376b92c619de/downloads/1c6q2kcdv_
50335. pdf
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Progress GANs vs. State of the art VAE

GAN "

SIS,

2014 2015

2017

Recent VAE"

99a9a9aY

*Brundage et.al. 2018 https://arxiv.org/pdf/1802.07228.pdf
“Zhao et.al 2017 https://arxiv.org/pdf/1702.08658.pdf
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Variational Autoencoders
e for image generation, necessity to reconstruct each pixel
e reparametrization is not applicable to discrete latent variables
e usually only allows to use a fixed standard normal as a prior

¢ images are often blurry compared to high-fidelity samples
generated by GANs

* allows for efficient Bayesian inference
Generative Adversarial Networks
* Instability of training

* mode collapse i.e. generated samples are often only from a few
modes of the data distribution

* only visual inspection since GANs do not support inference (can
additionally train an inference network)
¢ does not support discrete visible variables
Generally: We are unable to control the attributes of generated sam-

ples e.g. aim for regularization which enforces disentangled latent

38
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Gan Zoo’

Cumulative number of named GAN papers by month

Total number of papers

Year

* . . . 39
https://github.com/hindupuravinash/the-gan-zoo



So far missing

* Wake-Sleep Algorithm

¢ Independent Components

¢ Combination of State Space Models with Autoencoder

* ldentification of number of latent components; Bayesian
non-parametrics

Plan for Exercise on Tuesday:

Different Derivation based on Tutorial on Variational
Autoencoders https://arxiv.org/abs/1606.05908
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Questions?
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