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Abstract. We propose a novel method for addressing the model selection prob-
lem in the context of kernel methods. In contrast to existing methods which rely
on hold-out testing or try to compensate for the optimism of the generalization
error, our method is based on a structural analysis of the label information using
the eigenstructure of the kernel matrix. In this setting, the label vector can be
transformed into a representation in which the smooth information is easily dis-
cernible from the noise. This permits to estimate a cut-off dimension such that the
leading coefficients in that representation contains the learnable information, dis-
carding the noise. Based on this cut-off dimension, the regularization parameter
is estimated for kernel ridge regression.

1 Introduction

Kernel methods represent a widely used family of learning algorithms for supervised
learning. Irrespective of their theoretical motivation and background, kernel methods
compute a predictor which can be expressed as

f̂(x) =
n∑

i=1

k(x,Xi)α̂i + α̂0 (1)

with Xi being the features of training examples(Xi, Yi), k the kernel function and
a parameter vector̂α = (α̂0, . . . , α̂n) ∈ Rn+1 which is determined by the learning
algorithm based on the training examples. Typical examples for algorithms which gen-
erate this kind of fit include Support Vector Machines of various types, Kernel Ridge
Regression, and Gaussian Processes.

Since all the algorithms have to solve basically the same problem of finding a pa-
rameter vector in eq. (1) such that the resultingf̂ leads to good predictions, the relation-
ship between the space of all functions of the form (1) and the data-source generating
the training examples provides ana priori condition of the learning task in the setting
of kernel methods.

This leads to the question of model selection, either concerning the fitness of the ker-
nel, or the choice of regularization parameters. This problem is commonly approached
by adopting a black-box approach, and estimating the generalization error by cross-
validation. While this works well in practice (in particular when the cross-validation er-
ror can be computed efficiently, as is the case in the context of kernel ridge regression),



the question arises, whether additional insight into the nature of the learning problem
cannot lead to a less black-box method for model selection.

Now, recent approximation results on the eigenvalues ([1], [2], [3]) and eigenvectors
([4], [5]) of the kernel matrix, and in particular the improved bounds from [6], have lead
to novel insights into the relationship of the label informationYi and the eigenvectors of
the kernel matrix which will allow us to address the question of model selection without
resorting to hold-out-testing: Using the orthogonal basis of eigenvectors of the kernel
matrix, one can estimate an effective dimensionality of the learning problem, based on
which one can then select regularization constants.

This structural analysis of the label information is introduced in Section 2. In Sec-
tion 3, we show how this analysis can be used to perform model selection in the context
of kernel ridge regression, which we have picked as an example. In Section 4, we com-
pare the resulting model selection method against state-of-the-art methods to show that
competitive model selection without hold-out testing is possible.

2 Spectral Analysis of the Labels

In this section, we will discuss how recent approximation results imply that under cer-
tain conditions, a transformation of the vector of training labels using the eigenvectors
of the kernel matrix leads to a new representation of the label vector where the in-
teresting information is contained in the leading coefficients. By determining a cut-off
dimension in this representation, one can effectively separate the relevant from the noise
part in the training label information.

Fix a training set(X1, Y1), . . . , (Xn, Yn) of sizen and a kernel functionk, which is
assumed to be a Mercer kernel (see [7]). Thekernel matrixK is then× n matrix with
entries[K]ij = k(Xi, Xj).

For general data-sources, no easy answers can be expected, because the learning
task can be arbitrarily ill-behaved. Therefore, we restrict the discussion to the case
where the training examples are computed by subsampling a smooth function:

Yi = f(Xi) + εi, (2)

whereε1, . . . , εn is independent zero mean noise. Smoothness off is defined in the
sense thatf is a member of the reproducing kernel Hilbert space (RKHS)Hk induced
by k. More specifically, by Mercer’s theorem, there exists a`1-sequence(γi)i∈N and an
orthogonal family of functions(ψi)i∈N, such that

k(x, y) =
∞∑

i=1

γiψi(x)ψi(y). (3)

Then,f ∈ Hk, iff f =
∑∞

i=1 ciψi, with ‖f‖2Hk
:=

∑∞
i=1 c

2
i /γi < ∞. Consequently,

the coefficientsci decay rather quickly.
It will be convenient to consider the vector of all labelsY = (Y1, . . . , Yn). By our

modelling assumption (2), withF = (f(X1), . . . , f(Xn)) andε = (ε1, . . . , εn), we
can writeY as the sum of a sample vector of a smooth function and noise:Y = F + ε.
Obviously, in its original sample-wise representation, the two partsF andε of Y are



not easily distinguishable. We are looking for a change of representation which allows
us to distinguish betweenF andε. We will shortly see that the eigendecomposition of
the kernel matrix can be used to this end.

Recall that the kernel matrix is symmetric and positive definite, sincek is a Mercer
kernel. Therefore, there exists a so-called eigendecomposition ofK asK = UΛU>,
whereU is orthogonal (that is,UU> = U>U = I), andΛ = diag(λ1, . . . , λn). We
will assume throughout this paper that the columns ofU andΛ have been ordered such
thatλ1 ≥ . . . ≥ λn. It is easy to see that theith columnui of U is the eigenvector ofK
to the corresponding eigenvalueλi. SinceU is orthogonal, its columns (and therefore
the eigenvectors ofK) form an orthonormal basis ofRn, theeigenbasisof K.

Now sinceU is orthogonal, we can easily compute the coefficients ofY with respect
to the eigenbasis ofK, u1, . . . , un, simply by applyingU> to Y . We obtain,

U>Y = U>(F + ε) = U>F + U>ε, (4)

that is, the coefficients ofY are given by the superposition of the coefficients ofF
and those of the noiseε. The interesting observation is now thatU>F andU>ε have
radically different structural properties.

First, we have a look atU>F . Recall that in (3), we have introduced an orthogonal
family of functions(ψi). These are also the eigenfunctions of the integral operatorTk

associated withk. One can show that the scalar products〈ψi, f〉 are approximated by
the scalar productsu>i F , due to the fact thatK/n approximatesTk in an appropriate
sense asn → ∞ (the actual details are rather involved, see [4], [5] for a reference.)
Now since theψi are orthogonal,〈ψi, f〉 = ci, and asf ∈ Hk, ci decays to zero
quickly. Therefore, sinceu>i F approximatesci, we can expect thatu>i F decays to
zero asi → n as well (recent results [6] show that even in the finite sample setting,
the coefficients are approximated with high relative accuracy). The actual decay rate
depends on the complexity (or non-smoothness) off . In summary,U>F will only
have a finite number of large entries in the beginning (recall that we have sortedU such
that the associated eigenvalues are in non-increasing order.) In addition, this number is
independent of the number of training examples, such that it is a true characterization
of f .

Now let us turn toU>ε. First of all, assume thatε is normally distributed with mean
0 and covariance matrixσ2

εIn. In that case,U>ε has the same distribution asε, because
U>ε is just a (random) rotation ofε and, sinceε is spherically distributed, so isU>ε.
Therefore, a single realization ofU>ε will typically be uniformly spread out, meaning
that the individual coefficients[U>ε]i will all be on the same level. This behavior will
still hold to a lesser extent ifε is not normally distributed as long as the variances for the
differentεi are similar. Thus, a typical realization ofε will be more or less uniformly
spread out, and the same applies toU>ε.

In summary, starting with the label vectorY , through an appropriate change of rep-
resentation, we obtain an alternative representation ofY in which the two partsF and
ε have significantly different structures:U>F decays quickly, whileU>ε is uniformly
spread out. Figure 1 illustrates these observations for the example off(x) = sinc(4x),
and normally distributedε.
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Fig. 1. The noisy sinc function. Left: The input data. Right: Absolute values of the coefficients
with respect to the eigenbasis of the kernel matrix for a radial-basis kernel with width 0.3 of the
subsampled functionF and the noiseε, respectively. The coefficients ofF decay quickly while
those ofε are uniformly spread out.

2.1 Estimating the Cut-off Dimension

The observations so far are interesting in their own right, but what we need is a method
for automatically estimating the relevant, non-noise contentF in Y . As explained in the
last section,U>Y = U>F + U>ε, and we can expect that there exists somecut-off
dimensiond such that fori > d, [U>Y ]i will only contain noise. The problem is that
neither the exact shape ofU>F , nor the noise variance is in general known.

We thus propose the following heuristic for estimatingd. Let s = U>Y wheres is
assumed to be made up of two components:

si ∼

{
N (0, σ2

1) 1 ≤ i ≤ j,

N (0, σ2
2) j + 1 ≤ i ≤ n.

(5)

For the second part corresponding to the noise, the assumption of Gaussianity is actually
justified if ε is Gaussian. For the first part, since prior knowledge is not available, the
Gaussian distribution has been chosen as a baseline approximation. We will later see
that this choice works very well despite its special form.

We perform a maximum likelihood fit for eachj ∈ {1, . . . , n− 1}. The negative
log-likelihood is then proportional to

lj =
j

n
log σ2

1 +
n− j

n
log σ2

2 , with σ2
1 =

1
j

j∑
i=1

s2i , σ
2
2 =

1
n− j

n∑
i=j+1

s2i . (6)

We select thej which minimizes the negative log-likelihood, giving the cut-off point
d, such that the firstd eigenspaces contain the signal. The algorithm is summarized
in Figure 2. The computational requirements are dominated by the computation of the
eigendecomposition ofK, which requires aboutO(n3), and the computation ofs. The
log-likelihoods can then be computed inO(n).



Input: kernel matrixK ∈ Rn×n,
labelsY = (Y1, . . . , Yn) ∈ Rn.

Output: cut-off dimensiond ∈ {1, . . . , n− 1}
1 compute eigendecompositionK = UΛU> with

Λ = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn.
2 s = U>Y .
3 for j = 1, . . . , n− 1,

3a σ2
1 =

1

j

jX
i=1

s2
i , σ2

2 =
1

n− j

nX
i=j+1

s2
i ,

3b lj =
j

n
log σ2

1 +
n− j

n
log σ2

2 .

4 returnd = argminj=1,...,n−1 lj

Fig. 2.Estimating the cut-off dimension given a kernel matrix and a label vector.

3 Model Selection for Kernel Ridge Regression

We will next turn to the problem of estimating the regularization constant in Kernel
Ridge Regression (KRR). It is typically used with a family of kernel functions, for
example rbf-kernels. The method itself has a regularization parameterτ which controls
the complexity of the fit as well. These two parameters have to be supplied by the user
or be automatically inferred in some way.

Let us briefly review Kernel Ridge Regression. The fit is computed as follows:

f̂(x) =
n∑

i=1

k(x,Xi)α̂i, with α̂ = (K + τI)−1Y. (7)

One can show (see for example [8]) that this amounts to computing a least-squares fit
with penaltyτα>Kα. There is also a close connection to Gaussian Processes [9], in
thatf̂ is equivalent to the maximum a posteriori estimate using Gaussian processes in a
Bayesian framework. The complexity of the fit depends on the kernel function and the
regularization parameter with largerτ leading to solutions which are more regularized.
The model selection task consists in determining aτ which reconstructs the functionf
best while suppressing the noise.

3.1 The Spectrum Method for Estimating the Regularization Parameterτ

We will now discuss how the cut-off dimension from Section 2 could be used to deter-
mine the regularization constant given a fixed kernel. The idea is to adjustτ such that
the resulting fit reconstructs the signal up to the cut-off dimension, discarding the noise.

In order to understand how this could be accomplished, we first re-write the in-
sample fit computed by kernel ridge regression using the eigendecomposition of the
kernel matrix:

Ŷ = K(K + τI)−1Y = UΛ(Λ + τI)−1U>Y =
n∑

i=1

ui
λi

λi + τ
u>i Y. (8)



As before, the scalar productsu>i Y compute the coefficients ofY expressed in the basis
u1, . . . , un. KRR then computes the fit by shrinking these coefficients by the factor
λi/(λi + τ), and reconstructing the resulting fit in the original basis. These factors
wi = λi/(λi + τ) depend on the eigenvalues and the regularization parameter, and will
be close to1 if the eigenvalues are much larger thanτ , and close to0 otherwise. Now,
for kernel usually employed in the context of kernel methods (like the rbf-kernel), the
eigenvalues typically decay very quickly, such that the factorswi approximate a step
function. Therefore, KRR approximately projectsY to the eigenspaces belonging to
the first few eigenvectors, and the number of eigenvectors depends on the regularization
parameterτ .

We wish to setτ such that the factorwd is close to1 at the cut-off pointd and starts
to decay for larger indices. Therefore, we adjustτ such that require thatwd > ρ, for
some thresholdρ close to1. This leads to the choice

τ = wd =
λd

λd + τ
⇒ τ =

1− ρ

ρ
λd. (9)

The choice ofρ is rather arbitrary, but the method itself is not very sensitive to this
choice. We have found thatρ = 10/11 works quite well in practice. We will call this
method of first estimating the cut-off dimension and then setting the regularization pa-
rameter according to (9) thespectrum method.

The proposed procedure is admittedly rather ad-hoc, however, note that the under-
lying mechanisms are theoretically verified. Also, in the choice ofτ , we make sure that
no relevant information in the labels is discarded. Depending on the rate of decay of
the eigenvalues, further dimensions will potentially be included in the reconstruction.
However, this effect is in principle less harmful than estimating a too low dimension,
because additional data points can correct this choice, but not the error introduced by
estimating a too low dimension.

4 Experimental Evaluation

In this final section, we will compare the spectrum method to a number of state-of-the-
art methods. This experimental evaluation should study whether it is possible to achieve
competitive model selection based on our structural analysis. Unless otherwise noted,
the other methods will be used as follows: For estimating regularization constants, the
respective criterion (test-error or likelihood) is evaluated for the same possible values as
available for the spectrum method, and the best performing value is taken. If the kernel
widths is also determined, again all possible values are tested and the best performing
candidate is taken. For the spectrum method, the regularization parameter is first deter-
mined by the spectrum method, and then, the kernel with the best leave-one-out error is
selected. All data sets were iterated over100 realizations.

4.1 Regression data sets

For regression, we will compare the spectrum method (SM) with leave-one-out cross-
validation (CV) and evidence-maximization for Gaussian processes (GPML). For ker-
nel ridge regression, it is not necessary to recompute the solution for alln− 1 instances
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Fig. 3. The noisy sinc function. Left: The negative log-likelihood for different cut-off points.
Middle: The coefficients of signal and noise, and the shrinkage factors for theτ selected by the
spectrum method. One can see that the noise is nicely filtered out. Right: The resulting fit.

with one point removed, but the leave-one-out cross-validation error can be calculated
in closed-form (see for example [10]).

Evidence-maximization for Gaussian processes works by choosing the parameters
which maximize the marginal log-likelihood of the labels, which is derived, for exam-
ple, in [9, eq. (4)]. Note that this approach is fairly general and can be extended to more
kernel parameters which are then determined by gradient descent. For our application,
we will restrict ourselves to a single kernel width for all directions and performing an
exhaustive search.

The noisy sinc function We begin with a small illustrative example: Thenoisy sinc
functionexample is defined as follows: TheXi are drawn uniformly from[−π, π], and
Yi = sinc(4Xi) + 0.1εi, whereεi is N (0, 1)-distributed. A typical example data set
for n = 100 is shown in Figure 1. The kernel width isc = 0.3. In the left panel of
Figure 3, the negative log-likelihood is plotted. The minimum is atd = 9, which results
in τ = 0.145. In the right panel, the spectra of the data are plotted before and after
shrinkage, together with the shrinkage coefficients. One can see that the noise is nicely
suppressed. In the lower panel, the resulting fit is plotted.

Next we want to study the robustness of the algorithms. We vary the kernel width
and the noise levels. The resulting test errors for the CV and GPML and its standard
deviation are plotted in Figure 4. We see that the spectrum method performs competi-
tively to CV and GPML, except at large kernel widths, but we also see that GPML is
much more sensitive to the choice of the kernel. It seems that evidence maximization
tries to compensate for a mismatch between the kernel width and the actual data. For
the optimal kernel width (aroundc = 0.6), evidence maximization yields very good
results, but for too small or too large kernels, the performance deteriorates. To be fair,
we should add that evidence maximization is normally not used in this way. Usually,
the kernel width is included in the adaptation process.

Benchmark data sets Next, we compare the methods by also estimating the kernel
width. We have compared the three procedures on the sinc data set as introduced above,
and also for the bank and kin(etic) data sets from the DELVE repository (http://www.
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Fig. 4.The noisy sinc functions for different noise levels and kernel widths. Widthsc were chosen
from {0.1, 0.3, 0.6, 1.0, 2.0, 5.0}, and noise variances from{0.1, 0.3, 0.5}. Training set size was
100, test set size1000.
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Fig. 5. Benchmark data sets. Both parameters, the kernel widthc and the regularization constant
τ were estimated. Training set size was100, test set size was100 for sinc,39000 for kin40k, and
8092 else.

cs.toronto.edu/˜delve), and a variant of the kin data set, called kin40k, prepared by
A. Schwaighofer (http://www.cis.tugraz.at/igi/aschwaig/data.html).

Figure 5 shows the resulting test errors for the three methods. We see that all three
methods show the same performance. The only exception is the kin-8fm data set, where
the spectrum method results in a slightly larger error. We conclude that the spectrum
method performs competitively to the state-of-the-art procedures CV and GPML. On
the positive side, the spectrum method gives more insight into the structure of the data
set than cross-validation and it requires weaker modelling assumptions than GPML.

Table 1 shows the cut-off dimensions for the sinc, bank, and kin data set. For the
sinc data set, the cut-off dimension decreases with increasing noise. This behavior can
be interpreted as the noise masking the fine structures of the data. The same effect is
visible for the “h” (high noise) data sets versus the “m” (moderate noise) data sets.
We also see that the data sets are moderately complex, having at most17 significant
coefficients in the spectral analysis.

4.2 Classification data sets

Next, we would like to evaluate the spectrum method for classification. Since the esti-
mation of the cut-off dimension did not depend on the loss function with which the label
differences are measured, the procedure should in principle also work for classification.



Table 1.Cut-off dimensions for different data sets.

sinc σε = 0.1 0.2 0.3 0.5 1.0

d 9± 1 9± 1 8± 2 8± 2 5± 4
bank 8fh 8fm 8nh 8nm

d 9± 1 11± 4 10± 3 17± 8
kin 8fh 8fm 8nh 8nm 40k
d 7± 2 9± 2 6± 3 7± 3 8± 4

As usual, in order to apply Kernel Ridge Regression to classification, we use labels
+1 and−1. With that, the target functionf is given asf(x) = E(Y |X = x). The noise
is thenY − E(Y |X = x), which has mean zero, but has a discrete distribution, and a
non-uniform variance.

Benchmark dataWe use the benchmark data set from [11], which consists of thir-
teen artificial and real world data sets. We compare the spectrum method to a tentative
gold-standard achieved by a support vector machine (SVM) whose hyperparameters
have been fine-tuned by exhaustive search andk-fold cross validation. Furthermore, we
compare the spectrum method to generalized cross validation (GCV) [12].

Table 2 plots the results. Over all, the spectrum method performs very well and
achieves roughly the same classification rates as the support vector machine. GCV per-
forms worse on a number of data sets. Note that GCV has the same possible values forτ
at its disposal including those values leading to a better performance. For those data sets
we have performed GCV again, lettingτ vary from10−6 to 10, but this improves the
results only on theimagedata set to4.6± 2.1. Finally, we repeated the experiments for
a subset of the data sets, this time choosing the kernel widths by the spectrum method
andk-fold cross validation as in the SVM case. While this produced different kernel
widths, the results were not significantly different, which underlines the robustness of
the spectrum method.

In summary, we can conclude that the spectrum method performs very well on real-
world classification data sets, and even outperforms generalized cross validation on a
number of data sets.

5 Conclusion

We have proposed a novel method for model selection for kernel ridge regression which
is not based on correcting for the optimism of the training error, or on some form of
hold-out testing, but which employs a structural analysis of the learning problem at
hand. By estimating the number of relevant leading coefficients of the label vector rep-
resented in the basis of eigenvectors of the kernel matrix, we obtain a parameter which
can be used to pick a regularization constant leading to good performance. In addition,
one obtains a structural insight into the learning problem in the form of the estimated
dimensionality.
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Table 2.Test errors and standard deviations on the benchmark datasets from [11] (also available
online from http://www.first.fhg.de/˜raetsch) Each data set has already been split into 100 real-
izations of training and test data. The best achieved test errors (having the smallest variance in
the case of equality) have been highlighted. The last column shows the kernel widths used for all
three algorithms.

Dataset SVM SM GCV c

banana 11.5± 0.7 10.6± 0.5 10.8± 0.7 1
breast-cancer26.0± 4.7 27.0± 4.7 26.3± 4.6 50
diabetes 23.5± 1.7 23.2± 1.6 23.2± 1.8 20
flare-solar 32.4± 1.8 33.8± 1.6 33.7± 1.6 30
german 23.6± 2.1 23.5± 2.1 23.5± 2.1 55
heart 16.0± 3.3 15.9± 3.1 18.7± 6.7 120
image 3.0± 0.6 3.1± 0.4 6.3± 4.1 30
ringnorm 1.7± 0.1 4.9± 0.7 6.6± 2.0 10
splice 10.9± 0.6 11.3± 0.6 11.9± 0.5 70
titanic 22.4± 1.0 22.8± 0.9 22.6± 0.9 2
thyroid 4.8± 2.2 4.4± 2.2 12.6± 4.1 3
twonorm 3.0± 0.2 2.4± 0.1 2.7± 0.3 40
waveform 9.9± 0.4 10.0± 0.5 9.7± 0.4 20
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