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Abstract

MAP inference for general energy functions remains a challenging problem. Lin-
ear programming (LP) relaxations for MAP incorporate pairwise auxiliary vari-
ables encoding assignments for edges. We introduce LPQP, a MAP formulation
which includes a penalty on the Kullback-Leibler divergence between the auxil-
iary variables and the corresponding quadratic terms formed by unary variables.
An efficient DC algorithm is derived for minimizing the resulting non-convex for-
mulation. The core task of the algorithm reduces to a variant of the norm-product
belief propagation with modified unary potentials. Experiments on synthetic and
real-world data show substantial improvements over the standard LP relaxation.

1 Introduction

In this work we study a discrete pairwise energy minimization problem for a graph G = (V, E) of
the form

min
x

∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj). (1)

The assignment variable xi can assume values in {1, . . . ,K}. The potentials θi(xi) and θij(xi, xj)
encode unary and pairwise dependencies between the variables. For general graphs and energies the
energy minimization in (1) is NP-hard. This problem arises in the context of finding the maximum-a-
posteriori (MAP) prediction in Markov Random Fields. In this work we consider a fusion of a linear
programming relaxation and a non-convex quadratic programming relaxation. As the quadratic part
is introduced through a penalty function, the non-convexity of the objective can progressively be
increased. Using the Kullback-Leibler divergence as the penalty function and a difference of convex
functions method (DC), results in the standard LP objective with an additional pairwise entropy term
for each edge. We solve the minimization problem using an efficient message-passing algorithm,
which is repeatedly applied to modified unary potentials. We believe that this scheme combines the
merits of the standard LP relaxation in terms of speed and scalability as well as the benefits of a
compact description of the true constraint set. We demonstrate empirically that this leads to lower
energy solutions than the ones obtained by LP solvers. We also compare our approach to a state of
the art algorithm that further tightens the inexact LP relaxation.

2 Problem Formulation and Relaxation Approaches

The problem in (1) can be expressed as an integer quadratic program using K-ary coding:

min
µ

∑
i∈V

θT
i µi +

∑
(i,j)∈E

µT
i Θijµj (2)

s.t. µi;k ∈ {0, 1} ∀i, k and
∑
k

µi;k = 1 ∀i.
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We use the notation Θij to stress that the pairwise potentials here are represented in a matrix. Later
we use θij to denote the vectorized version of this matrix, i.e. θij = vec(Θij). An assignment
of the variable xi to state k corresponds to setting the k-th element of µi (denoted by µi;k) to
one. Variational approaches for MAP inference can be divided according to whether the solution
obtained is a lower bound or an upper bound on the energy of the true global minimum. The linear
programming (LP) relaxation discussed next is an example of a lower bound. On the other hand the
quadratic programming (QP) approach introduced in section 2.2, is an upper bound.

2.1 Linear Programming

The LP approach [1, 2] is based on a convex relaxation of (2). An additional variable µij is included
for each edge. Proper marginalization is enforced through summation constraints. The resulting
convex optimization problem is given by

min
µ∈LG

∑
i∈V

θT
i µi +

∑
(i,j)∈E

θT
ijµij , (3)

with LG , the local marginal polytope:

LG =

µ

∣∣∣∣∣∣∣
∑
k µi;k = 1 ∀i ∈ V∑
l µij;kl = µi;k ∀k, (i, j) ∈ E∑
k µij;kl = µj;l ∀l, (i, j) ∈ E

µij;kl ≥ 0 ∀k, l, (i, j) ∈ E

 . (4)

In the general case LG is an inexact description of the marginal polytope, which requires an ex-
ponentially large number of constraints [2]. Including additional summation constraints over larger
subsets of variables intoLG tightens the LP relaxation further [3]. However, these methods generally
suffer from an increased complexity as ultimately an exponentially large set of possible constraints
needs to be searched over. An important property of LP-based approaches is their ability to give
certificates of optimality. If the obtained solution is integer, the global optimum has been found.

2.2 Quadratic Programming

An alternative relaxation of the integer quadratic program in (2) is obtained by simply dropping the
integer constraint. The resulting QP reads as follows:

min
µ∈∆

|V|
K

∑
i∈V

θT
i µi +

∑
(i,j)∈E

µT
i Θijµj . (5)

Here ∆K denotes the simplex over K variables and ∆
|V|
K the product space of |V| simplexes. Notice

that the dimensionality of µ isK· |V|, whereas in (3) the dimensionality isK· |V|+K2· |E|. A direct
minimization of (5) is complex, as the product term for the edges makes the problem non-convex.
There exist different approaches in the literature to deal with this non-convexity. [4] suggests con-
vexifying the problem and [5] introduces a difference of convex (DC) functions approach. Finally,
[6] recently introduced a message-passing algorithm for solving (5). The message-passing algorithm
in our work is similar in spirit, as it ultimately solves the QP relaxation. However, our formulation
also shares properties of the LP relaxation as it still includes the auxiliary pairwise variables. This
helps overcoming poor local minima. In all of the experiments we conducted, the solution obtained
by our formulation was at least comparable to the LP relaxation, most often substantially improving
over it. This is generally not the case for QP relaxations, due to local minima.

3 Combining the LP and QP Relaxation

We consider a combination of the LP and QP relaxations. In our approach we keep the auxiliary
variables µij for the pairwise terms, but force these variables to agree with the product of the unary
marginals µi and µj . The constraint is included as a penalty function in the objective, which allows
us to enforce the constraint in a soft manner through a parameter β. As the penalty function we
choose the Kullback-Leibler (KL) divergence. The combined objective reads as follows

min
µ∈LG

∑
i∈V

θT
i µi +

∑
(i,j)∈E

θT
ijµij + β

∑
(i,j)∈E

DKL(µij , vec(µiµ
T
j )). (6)
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Here vec(µiµ
T
j ) denotes the vectorized version of the outer product of µi and µj . Other distance

functions, such as the squared Euclidean distance would be possible as well. We focus on the
Kullback-Leibler divergence as it is the natural choice for distributions. The KL divergence for two
discrete distributions µ and ν is given by

DKL(µ,ν) =
∑
k

µk log

(
µk
νk

)
. (7)

For β = 0 (6) reverts to the standard LP relaxation. For β → ∞ the QP relaxation is reconstructed
(and the auxiliary pairwise variables µij become redundant). Our MAP algorithm is based on
successively increasing β and thereby slowly enforcing the constraint.

3.1 Difference of Convex Functions Decomposition

One way to solve a constrained optimization problem where the objective is non-convex, is through
the convex-concave procedure (CCCP) [7], provided the objective has a decomposition into a convex
and a concave part. We derive such a decomposition for the problem in (6). CCCP applied to the
inference problem assumes a decomposition of the following form

min
µ∈LG

uβ(µ)− vβ(µ), (8)

where both, uβ(µ) and vβ(µ) are convex. For the combined relaxation problem in (6) a decompo-
sition into a convex and concave function is given by

uβ(µ) =
∑
i∈V

θT
i µi +

∑
(i,j)∈E

θT
ijµij − β

∑
(i,j)∈E

H(µij) (9)

vβ(µ) = −β
∑
i∈V

diH(µi). (10)

Here di denotes the degree of node i and H(µ) denotes the entropy H(µ) = −∑k µk log(µk).
In the derivation of the decomposition we made use of the fact that −∑k,l µij;kl logµi;k =

−∑k,l µi;k logµi;k due to the marginalization constraints of the pairwise marginals. uβ(µ) consists
of the original LP formulation with an additional term that promotes a high entropy on the pairwise
marginal variables. vβ(µ) on the other hand induces a low entropy on the unary marginal variables
µi. The CCCP algorithm proceeds by solving iteratively the convexified objective by linearizing the
vβ(µ) term:

µt+1 = argmin
µ∈LG

uβ(µ)− µT∇vβ(µt). (11)

The gradient of vβ(µ) is given by
∂vβ(µ)

∂µi;k
= βdi(1 + log(µi;k)) and

∂vβ(µ)

∂µij;kl
= 0. (12)

Hence, the second term in (11) turns out to be an entropy approximation where the term log(µi)
is replaced by log(µti), i.e. the marginal from the previous iteration is used instead (which is a
constant).

3.2 The LPQP Algorithm

The full algorithm is shown in Algorithm 1. It consists of two loops, the inner loop solves the
DC problem for a fixed β, the outer loop gradually increases the penalization parameter β. The
main computational bottleneck is in line 5, where a particular convex optimization problem needs
to be solved. As we will show in the next section, this turns out to be efficiently solved by a
variant of the norm-product belief propagation algorithm. As the algorithm progresses and the β is
increased, we would expect little changes in the solution and hence warm-starting the optimization
problem on line 5 with the previous solution will lead to a massive speed increase. In all of the
experiments we used β0 = 0.1 and a multiplicative increase of β by a factor of 1.5. For a uniform
initialization of the marginals, as used here, the first iteration does not depend on the initial solution
and simply corresponds to solving the LP with an additional pairwise entropy term. We observed
that the algorithm was less likely to return fractional solutions than the standard LP relaxation, but
this could happen nevertheless. For the final solution we assigned each variable to the state with the
largest marginal value.
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Algorithm 1 The LPQP algorithm for MAP inference.
Require: G = (V, E),θ.

1: initialize µ ∈ LG uniform, β = β0.
2: repeat
3: t = 0,µ0 = µ.
4: repeat
5: µt+1 = argminτ∈LG

uβ(τ )− τT∇vβ(µt).
6: t = t+ 1.
7: until ‖µt − µt−1‖2 ≤ εdc.
8: µ = µt.
9: increase β.

10: until ‖µ− µ0‖2 ≤ εβ .
11: return µ.

3.3 A Message Passing Algorithm for Solving the Convex Sub-problem

LPQP repeatedly solves the convex sub-problem for different penalty parameters β and unary po-
tentials θ̃i using message-passing. The sub-problem is given by

min
µ∈LG

∑
i∈V

θ̃T
i µi +

∑
(i,j)∈E

θT
ijµij − β

∑
(i,j)∈E

H(µij). (13)

Here the modified unary potential

θ̃i = θi − βdi log(µti), (14)

corresponds to the original potential combined with the gradient term from the linearized part from
the DC decomposition as in (11) 1. It is interesting to observe that the potential aggressively dis-
encourages configurations that already had small probability in the previous iteration t.

The norm-product belief-propagation (BP) algorithm [8] solves (13). It is a generalization of
(amongst others) belief-propagation [9] and tree-reweighted BP [10]. The algorithm is a primal-
dual ascent algorithm and is guaranteed to converge to the global optimum for any choice of β > 0.
In practice, we however noticed that for very small values of β numerical problems could occur
and convergence was generally fairly slow. The norm-product algorithm applied to (13) computes
messages passed from node j to node i as follows

mj→i(xi) ∝

∑
xj

θ
1/β
ij (xi, xj)

θ
1/(djβ)
j (xj)

∏
k∈N (j)m

1/(djβ)
k→j (xj)

m
1/β
i→j(xj)

β

. (15)

The marginals µi are obtained by multiplying the incoming messages at variable i:

µi(xi) ∝

−θi(xi) ∏
j∈N (i)

mj→i(xi)

1/(diβ)

. (16)

In our implementation of LPQP, the message-passing algorithm warm-starts using the messages
from the previous DC iteration. Therefore, typically only few passes through the graph are needed
to reach a convergence of the messages in later stages of the LPQP algorithm.

4 Experiments

We implemented Algorithm 1 in C++ and interfaced the code with Matlab using MEX. In our exper-
iments we compare LPQP to LP relaxation solutions obtained using TRWS [11], a highly efficient
message-passing algorithm for solving the LP relaxation. Furthermore, we compare also to solutions
computed by MPLP [3] or if known, the global optimum. MPLP is a message-passing algorithm

1Notice that the βdi part in ∇vβ is constant and can therefore be dropped.
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that initially solves the LP relaxation but in later iterations also includes additional summation con-
straints over sets of three or four variables. MPLP was shown to identify the global optimum for
some problems, but convergence is generally rather slow.

The output of the algorithms is an assignment of the variables, for which the energy in (1) can be
computed and compared. However, the value of the energy obtained on a specific problem instance
can not be used as a basis for comparison between instances. Moreover, the value of the energies lack
a proper normalization for quantitative comparison between different results on the same instance.
We therefore use the following energy comparison procedure. In each experiment run we set the
worst and the best scores to zero and one respectively. The remaining score is then set to a fraction
relative to its value between the best and the worst result. We use a linear scaling. This performance
measure allows us to compare the algorithms as well as average over the results of different instances
of the same task.

4.1 Synthetic Potts Model Data

We follow a similar experimental setup as in [12]. The graph is a 4-nearest neighbor grid of varying
size. We used M = 60, 90, 120 where M is the side-length of the grid and M2 is the overall
number of variables. We used K = 2 and K = 5 for the number of states. The unary potentials
were randomly set to θi;k(xi) ∼ Uniform(−σ, σ), we used σ values in [0.05, 0.5]. The pairwise
potentials θij(xi, xj) penalize agreements or disagreements of the labels by an amount chosen at
random αi,j ∼ Uniform(−1, 1). Such that θij(xi, xj) = 0 if xi 6= xj and αi,j otherwise. The
problem gets harder for small values of σ, the parameter can be understood as the signal-to-noise
ratio.

We compared our algorithm with TRWS and MPLP using the performance measure described ear-
lier. For each parameters choice we averaged the scores of 5 runs. The results are presented in
Figure 1. As we expect TRWS returns the worst assignment on almost all configurations. In terms

M (size) 60 90 120
K (# states) 2 5 2 5 2 5

σ = 0.05
MPLP 0.73 0.99 0.53 0.97 0 0.95
LPQP 1 0.99 1 1 1 1
TRWS 0 0 0 0 0.40 0

σ = 0.5
MPLP 1 1 1 1 1 1
LPQP 0.99 0.94 0.99 0.93 1 0.96
TRWS 0 0 0 0 0 0

0 500 1,000 1,500
−4,000
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−3,000

−2,500

−2,000

iteration

ob
je

ct
iv

e

LPQP
QP
LP

decoded

Figure 1: Left: Relative scores achieved by MPLP, LPQP and TRWS on the synthetic grid data.
The scores are averaged over 5 runs, in each run the algorithms with the best and worst objective
values get 1 and 0 respectively. The remaining algorithm gets a fractional score reflecting its relative
objective value. Right: Development of the different objectives (for the same µ) during a run of
the LPQP message-passing algorithm. The decoded objective refers to the current solution rounded
to integer values. The vertical lines show iterations where β was increased. The orange and cyan
horizontal dashed lines show the energy of the solution found by TRWS and MPLP, respectively.

of running time however, TRWS was always first to output a solution, followed by LPQP. MPLP
was always slower and on the larger instances did not converge within a predefined maximal time.
We therefore restricted the number of tightening iterations of MPLP to a maximum of 1000. A
tightening iteration includes additional constraints into the local marginal polytope. Even after this
change MPLP was still considerably slower than LPQP and TRWS. The energies obtained by LPQP
and MPLP were very close on all configurations. We observe that the LPQP is doing better in com-
parison to the MPLP when the potentials are sampled with lower signal-to-noise ratio σ. This is also
the case for a lower number of states, i.e. K = 2 instead of 5.
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4.2 Protein Side-chain Prediction
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Figure 2: Protein prediction results. A score of
one corresponds to finding the global minimum,
a score of zero indicates the worse solution than
(see text for more details). LPQP most often im-
proves on TRWS, with a few exceptions. For
around half of the problems the global optimum
is found.

As a real-world experiment we applied our
MAP algorithm to the protein inference prob-
lem discussed in [13]. The data set was ob-
tained from the supplementary material. It con-
sists of two tasks: protein side-chain predic-
tion and protein design. Here we consider the
protein side-chain prediction problem. Earlier
work [13], showed that only for 30 out of the
370 instances the LP relaxation is not tight.
For 28 of the 30 instances, the true MAP has
been computed in [13] using general integer
programming techniques. We applied our algo-
rithm to the 368 problem instances with known
optimum.

Figure 2 visualizes the results for the 28 in-
stances where the LP relaxation is not tight.
We used the same scoring as in the previous
experiment only with the global optimum as
the best result corresponding to a score of one.
As before, the worst algorithm gets a score
of zero. The LP relaxation (TRWS) performs
worse than the LPQP algorithm. The LPQP
finds the global minimum in roughly half of the
instances. For the instances where the LP is tight (results are not shown), LPQP finds the global op-
timum in 75% of the cases. For the remaining 25% the energy sub-optimality is very small. MPLP
was applied to the protein side-chain prediction dataset before [3] and found the global optimum in
all instances. However, this comes at an increase in running time.

5 Conclusions and Future Work

We introduce a novel formulation for MAP inference in graphical models. The objective incor-
porates a quadratic constraint on the auxiliary pairwise LP variables. The quadratic constraint is
enforced in a soft manner using as KL divergence penalty term in the objective. This helps over-
coming poor local minima. A CCCP message-passing algorithm is derived to minimize the resulting
objective. The LPQP algorithm shows substantial improvements over the standard LP relaxation.
LPQP is also competitive when compared to LP relaxations that incorporate summation constraints
over larger subsets of variables.

On the theoretical side the future work should include a more principled way to increment the
penalty parameter β as well as an improved rounding scheme for obtaining final assignments. In
addition we would like to investigate further the properties of the algorithm in terms of convergence
guarantees. On the practical side we would like to apply LPQP to larger real-world problems, often
encountered in computer vision. LPQP has a relatively small overhead when compared to standard
message-passing algorithms such as TRWS, and is therefore expected to perform well on large-scale
problems.
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