Algorithmic Game Theory

Autumn 2021
Exercise Set 10

> These exercises are non-graded. Please submit your your solutions via moodle, in order to get feedbacks, before (Dec 6, 10:00 am - longer deadline). If you cannot use moodle, please send solutions by email to agt-course@lists.inf.ethz.ch.

Exercise 1:

(2 Points)
Construct a game G which is NBR-solvable and such that asynchronous best-response take $\Omega(n)$ rounds to converge to a pure Nash equilibrium, where n is the number of players.

Exercise 2:
 (2+2 Points)

Consider the following simpler definition of NBR-solvable game with clear outcome, where we exchanged the "quantifier" between "elimination sequence" and "player i " (compare it with the original definition in lecture notes 10):

Definition 1 (NBR-solvable with clear outcome (simpler)) A NBR-solvable game G has a clear outcome if there exists a tie breaking rule \prec such that the following holds. There exists an elimination sequence consisting of players $p_{1}, \ldots, p_{a}, \ldots, p_{\ell}$ and strategies $E_{1}, \ldots, E_{a}, \ldots, E_{\ell}$ (according to Definition 4 in lecture notes) such that, for every player i the following holds:

1. p_{a} denotes the first appearance of i in the sequence, that is,

$$
p_{a}=i \neq p_{1}, p_{2}, \ldots, p_{a-1}
$$

2. in the corresponding subgame

$$
G_{a-1}=G \backslash\left(E_{1} \cup E_{2} \cup \cdots \cup E_{a-1}\right)
$$

the PNE s* is globally optimal for i, that is,

$$
u_{i}(\hat{s}) \leq u_{i}\left(s^{*}\right) \quad \text { for all } \hat{s} \in G_{a-1} .
$$

(Recall that s^{*} is the unique profile in the final subgame G_{ℓ}.)

Your task is to exhibit a game such that

- Asynchronous best-response converge and are incentive compatible;
- The game does not satisfy the definition above.

Exercise 3:
Recall from the lecture notes the Gao-Rexford model for the preferences in BGP games. Consider the following network and preferences:

Suppose that 1 is a customer of 2 and that all other pairwise commercial relationships (not specified) are such that, with the preferences above, do not violate GR1 (customerpaths over peer-paths over provider-paths) and GR2 (transit traffic). Show that the third condition GR3 is violated.

