ETH Zürich Andrei Ivanov, Lorenzo Laneve, Varun Maram, Paolo Penna

Deadline: Beginning of next lecture

Algorithmic Game Theory

Autumn 2021

Exercise Set 10

These exercises are **non-graded**. Please submit your your solutions via moodle, in order to get **feedbacks**, before the beginning of next lecture (**Dec 13, 10:00 am**). If you cannot use moodle, please send solutions by **email** to agt-course@lists.inf.ethz.ch.

Exercise 1:

(2+4 Points)*n* nodes (players) and

Recall that in the **stable matching** problem, we have a graph over n nodes (players) and each node has strict preferences over its neighbors. A **stable matching** is a matching such that there are no two players who prefer each other to their matched partners, that is, nothing like this should happen:

In Lecture 10 we have seen an algorithm which computes a stable matching in **bipartite** graphs. Here we consider the **general** version of the problem, that is, we can have any undirected graph.

Your task:

- 1. Show that in general graphs a stable matching may not exist.
- 2. Consider the stable matching problem on general graphs restricted to acyclic instances:

Acyclic Instances: There is no cycle of $\ell \geq 3$ players

$$i_1 \to i_2 \to \cdots \to i_\ell \to i_1$$

such that each player prefers the next one over the previous one.

Prove that for acyclic instances the Best-Response Matching Mechanism in the lecture notes converges and is incentive compatible (no player can get matched to a player he/she likes more by misreporting her preferences). Your proof should be based on the "never best response" framework.

Exercise 2:

(4+1 Points)

Consider a single-item auction with two bidders. We want to study the relation between **repeated** 1^{st} -price auction and 2^{nd} -price auction. For this we repeat the definition and introduce a convenient tie breaking rule:

1^{st} -price auction:

- For $b_1 \ge b_2$ bidder 1 wins and pays b_1 ;
- For $b_1 < b_2$ bidder 2 wins and pays b_2 .

Tie breaking rule \succ_i : For any two strategies s and t with t > s

at least one above $v_i \Rightarrow$ prefer the smallest) :			
$s > v_i \text{ or } t > v_i$	\implies	$s \succ_i t$	(1)
(both below $v_i \Rightarrow$ prefer the largest) :			
$s \leq v_i$ and $t \leq v_i$	\Rightarrow	$t \succ_i s$	(2)

To avoid certain "corner cases" we make the following two assumptions:

- The true valuations v_i are always nonnegative integer, $v_i \in \{0, 1, 2, \ldots\}$;
- Each bidder can make a bid which is a multiple of some small 'minimal increment' $\delta = 1/c$ for integer $c \ge 2$, that is, $b_i \in \{0, \delta, 2\delta, \dots, 1, 1 + \delta, \dots, \}$.

Your task:

• Describe **repeated** 1^{st} -**price auction** as a best-response dynamics and prove that it converges to a unique PNE. In particular, this PNE is "essentially" the same outcome (winner and payments) of 2^{nd} -**price auction** on input the true valuations. By "essentially" we mean that in the PNE the winner pays P_{win}^{2nd} or $P_{win}^{2nd} + \delta$, where P_{win}^{2nd} is the price the winner pays in the 2^{nd} -price auction. (Discuss explicitly all cases $v_1 > v_2$, $v_1 = v_2$, and $v_2 > v_1$.)

(Hint: use definition of NBR-solvable game, without the 'clear outcome' part.)

• Suppose we have proven that the above repeated 1st-price auction is an incentive compatible best-response mechanism. Explain how you can deduce from this that 2nd-price auction is truthful (reporting a bid different from the true valuation does not improve the utility of the corresponding player).

Note: In the 1st-price auction (game) above, the utility of a winning bidder *i* is $v_i - p_i$ where $p_i = p_i(b_1, b_2)$ is the payment computed as above (non-winners have 0 utility).