ETH Zürich
Andrei Ivanov, Lorenzo Laneve, Varun Maram, Paolo Penna

Algorithmic Game Theory

Autumn 2021
Exercise Set 5

Exercise 1:

Consider the following fair cost-sharing game:

Each player i wants to be connected from s_{i} to t , and the edges are undirected. That is, two or more players can use the same edge e in different directions, and they all share equally the cost c_{e} of this edge.

Prove that the price of stability for pure Nash equilibria is at most 2 in this game. (In fact, you can consider any ring with n players.)

Exercise 2:

Consider the following mechanism (A, P) for the shortest path problem (see lecture notes for the setting):
(a) Algorithm A computes the shortest path according to the reported $\operatorname{costs} c=\left(c_{1}, \ldots, c_{n}\right)$.
(b) Each selected player i (i.e., a player whose edge is in the selected path) receives a payment P_{i} equal to the cost of the alternative shortest path, that is, the length of the shortest path other than the path $A(c)$ computed in the previous step.

Show that this mechanism is not truthful on general graphs.

Exercise 3:

(3 Points)
Consider the following problem: There are n users (players) potentially interested in receiving a TV transmission, and the transmission is sent from a server s over this simple network:

All users are located in the same node, and $C>0$ is the cost for sending the transmission to one or more users:

The server \mathbf{s} can select which users receive the transmission (and which do not). If one or more receive, s has cost exactly C in total (the use of the link). If no user receives, the cost for s is 0 .

Each user has a private valuation v_{i}, that is, how much he/she is willing to pay for the transmission. Users can chet and report a different valuation r_{i}. The utility of user i is given by the difference between the valuation and the amount of money he/she has to pay:

$$
-P_{i}+ \begin{cases}v_{i} & \text { if } i \text { receives the transmission } \\ 0 & \text { otherwise }\end{cases}
$$

Give a truthful mechanism satisfying the following two conditions:

1. Either only the user with highest (reported) valuation receives and none else does, or none receives the transmission.
2. If one user receives, then he/she is charged an amount which is at least the cost C.

Truthful means that reporting the true valuation v_{i} maximizes i 's utility (no matter how we fix the reports r_{j} of the other users).

