
Algorithmic Game Theory Autumn 2021, Week 13

Very Hard Games

ETH Zürich Paolo Penna

These notes are quite informal, and mainly contain references and few details about
the topics discussed in the last (bonus) lecture:

• Generative Adversarial Networks (GANs)

• Games in Statistical Physics and Biology

• Q-learning in Reinforcement Learning

These new topics will not be part of the exam, though we use them to refresh our
knowledge about topics seen in the course (and maybe to see the limitations of these
results, and what is beyond this course).

1 Generative Adversarial Networks (GANs)

Sources and more details:

• Blog about GANs

• GANs animation/visualization webpage

• YouTube video

• Original paper (existence of “good” equilibria where training is always “successful”)

• Older paper (key ingredient about “almost pure” good equilibria – Thm 2)

The main idea og GANs is to simultaneously training a Generator (GEN) and a Discrim-
inator (DIS) by letting them “compete against each other” very much like a zero-sum
game. Each player is a neural network and the strategy is the choice of the internal pa-
rameters/weights. The generator generates some “image” x ∼ G and the discriminator
should tell whether it is fake (D(x) = 0) or real (D(x) = 1). The discriminator gets in
input either a real image (y ∼ R where R is the real distribution) or a fake image from
the generator:

GANs zero-sum game:

U(G,D) = Ex∼G[D(x)] + Ey∼R[1−D(y)] (1)

The generator wants to maximize this utility (fool the discriminator as much as possible)
and of course the discriminator wants to minimize it instead.

Exercise 1. Consider a simpler version of (1) in which we remove the second term
(ignore real distribution). What is the best strategy of the discriminator?

Version December 17, 2021 Page 1 of 8

https://blog.floydhub.com/gans-story-so-far/
https://poloclub.github.io/ganlab/
https://www.youtube.com/watch?v=AmUC4m6w1wo
https://proceedings.mlr.press/v70/arora17a.html
https://arxiv.org/abs/cs/0205035


Algorithmic Game Theory, Autumn 2021 Week 13

Exercise 2. What is the best strategy of the generator for the game in (1), assuming
G = R is possible? What is the utility utility of the generator in such strategy? What is
the minimum possible utility of the generator?

Here is what happens (details in the original paper):

1. The strategy of each player (neural network) is a choice of the weights;

2. The generator can approximate any real distribution (Gaussian distributions are
the “building blocks” of all distributions);

3. We can assume the weights (strategies) to be descrete from a set {0, δ, 2δ, · · · , kδ}
as we anyway only want a good approximation;

4. There is always an (approximate) PNE where the generator “wins”.

The last point is essential to capture the “successful” training: (i) in the end the gen-
erator fixes its weights and uses the same weights to generate all realistic images, (ii)
the discriminator essentially cannot distinguish these from the realistic ones, and (iii) no
other discriminator can do that.

The discriminator has p parameters (weights) and so has the generator.

Both players have a huge set of strategies (though finite) of size at most N = kp.

Every finite zero-sum game has an ε-approximate MNE where each player uses at
most O(logN/ε2) strategies (Thm 2 here).

Back to our GANs application,

1. Any mixed strategy over r = O(logN/ε2) pure strategies is a distribution over r
(deterministic/pure) generators G1, . . . , Gr; each of them with p parameters.

2. This distribution can be simulated by a pure “super-generator” with p2 parameters.

any mixed strategy over r = O(logN/ε2) pure strategies is a distribution over r generators
G1, . . . , Gr.

For any real distribution R and any discriminator with at most p parameters, there
exists a generator with O(p2) parameters that “fools” the generator (Thm 4.3
here).

Version December 17, 2021 Page 2 of 8

https://proceedings.mlr.press/v70/arora17a.html
https://arxiv.org/abs/cs/0205035
https://proceedings.mlr.press/v70/arora17a.html
https://proceedings.mlr.press/v70/arora17a.html


Algorithmic Game Theory, Autumn 2021 Week 13

2 Statistical Physics

Sources and more details:

• YouTube video (magnetism and temperature)

• YouTube video (Ising model simulation with Python code)

• Lecture notes (from a course at EPFL by Nicolas Macris)

• Markov chains (basics to analyze the “equilibrium” of these dynamics)

• Original paper (application to strategic games and convergence to “good” equilibria)

• Another paper (about the time to converge to “equilibrium”)

• Statistical Learning Theory (ETH course by Joachim Buhmann – many more con-
nections between Statistical Physics and ML, and more)

Think about a player who has limited rationality: When facing different alternatives
can only distinguish them if the utility is “significantly” different. When instead two
alternatives have roughly the same utility, the player will choose one of them with roughly
the same probability.

“Noisy” Best-response (single player setting):

p
(β)
i (a) =

eβui(a)

Z(β)
Z(β) =

∑
a′∈Ai

eβui(a
′) (2)

Exercise 3. Convince yourself that, for β → ∞, the distribution in (2) assigns non-
zero probability only to actions with optimal (minimum) cost. What happens if there are
multiple BR? What happens from β = 0 instead?

In games with several players, we consider the following “noisy” best response dynam-
ics: At each step pick a random player and let him/her respond according to (2) where

instead of ui(a) we have ui(a, s
(t)
−i) and s(t) is the current profile (strategies of each player).

This process gives a Markov chain whose stationary distribution (“equilibrium”) can
be computed in several games.

For any potential game the above dynamics converges to a stationary distribu-
tion π of the form

π(s) =
eβPOT (s)

ZPOT
ZPOT =

∑
s′

eβPOT (s
′) (3)

where POT is the potential function of the game:

ui(si, s−i)− ui(s′i, s−i) = POT (si, s−i)− POT (s′i, s−i) (4)

Version December 17, 2021 Page 3 of 8

https://www.youtube.com/watch?v=IlnZKSR73S0
https://www.youtube.com/watch?v=K--1hlv9yv0
https://github.com/lukepolson/youtube_channel/blob/main/Python%20Metaphysics%20Series/vid14.ipynb
https://documents.epfl.ch/groups/i/ip/ipg/www/2010-2011/Statistical_Physics_for_Communication_and_Computer_Science/lecture3.pdf
https://ml2.inf.ethz.ch/courses/slt/tutorials/tutorial03-sampling.pdf
https://www.sciencedirect.com/science/article/pii/S0899825683710237?via%3Dihub
https://link.springer.com/article/10.1007%2Fs00453-015-0025-7
https://ml2.inf.ethz.ch/courses/slt/


Algorithmic Game Theory, Autumn 2021 Week 13

Exercise 4. Consider the following two coordination games:

A B

A 1
1

0
0

B 0
0

1
1

A B

A 1
1

0
0

B 0
0

2
2

For β →∞, what is the stationary distribution π in (3) in these games?

The Ising model in statistical physics is (essentially) the coordination game on the left
played on the simple grid network:

s1 s2 s3

s4 s5 s6

s9s8s7

3 Biology and Evolution

Sources and more details:

• These lecture notes (from an MIT course)

• Chapter 8 in this book

• These Python examples (part of this course at University of Graz)

In biology we consider a (large) population of individuals, each of them with some char-
acteristic (strategy in our terminology). Instead of choosing the strategy, each individual
i is matched with a random “mate” and the current strategy of player i is copied pro-
portionally to the fitness (utility). We are interested how the population evolves, that
is, the proportion (probability) of players choosing strategy a over time.

“Replicator” Response:

p
(t+1)
i (a) =ui(a)p

(t)
i (a) (5)

To study the steady states (equilibria) of such dynamics we simply consider the time
derivatives and set them to zero.

Version December 17, 2021 Page 4 of 8

https://ocw.mit.edu/courses/economics/14-11-insights-from-game-theory-into-social-behavior-fall-2013/lecture-slides/MIT14_11F13_Replica_dynam.pdf
https://link.springer.com/book/10.1007/978-3-540-69291-1
http://systems-sciences.uni-graz.at/etextbook/gametheory/replicator.html
http://systems-sciences.uni-graz.at/etextbook/


Algorithmic Game Theory, Autumn 2021 Week 13

Replicator dynamics

ṗ
(t)
i (a) = p

(t)
i (a)(u

(t)
i (a)− ū(t)i ) (6)

where ū
(t)
i = E

a∼p(t)i
[u

(t)
i (a)] and u

(t)
i (a) = E

s2∼p(t)i (a)
u1(a, s2).

Exercise 5. Consider the above equation for a single-player setting, and convince yourself
that the steady states correspond to the following condition:

p
(t)
i (a) > 0 =⇒ u

(t)
i (a) = ū

(t)
i (7)

Try to understand the relation between this condition and MNE.

4 Reinforcement Learning

Sources and more details:

• YouTube video (AlphaGo and others)

• YouTube video (OpenAI multi-agent RL)

• YouTube video (intuition about Q-learning)

• RL Book (with Q-learning in Section 6.5)

• Original paper (analyzing Q-learning in two-players two-strategies games)

• Recent paper (connecting Q-learning to Catastrophe Theory)

The idea of Q-learning is to compute the (optimal) value for each action-state pair.
This can be done via an iterative procedure where the current estimates Q(t) and the
“observed/immediate” reward (utility) give the new estimates Q(t+1):

Q(t+1)(a, state) = (1− α)Q(t+1)(a, state) + α[(ui(a, state) + γmax
b
Q(t)(b, state′)] (8)

where α controls the trade-off between the past estimates and the currently observed
utility (this is similar to the learning parameter η is the MWUA algorithm). The other
parameter γ is the so-called discount factor, which models that future rewards are “less
valuable” than immediate ones (like monetary “inflation”). The right-hand side of (8)
assumes that the next action (after going to the new state state′) is chosen optimally.

If we consider a “stateless” setting and replace the optimal action choice with a noisy
one, we obtain the following “Boltzmann” Q-learning consisting of two parts:

Selection:

p(t)(a) =
eβQ

(t)(a)

Z(t)
where Z(t) =

∑
a′

eβQ
(t)(a′) (9)

Update Q-values:

Q(t+1)(a) = (1− α)Q(t+1)(a) + αu
(t)
i (a) (10)

Version December 17, 2021 Page 5 of 8

https://www.youtube.com/watch?v=8dMFJpEGNLQ
https://www.youtube.com/watch?v=kopoLzvh5jY
https://www.youtube.com/watch?v=qhRNvCVVJaA
http://www.incompleteideas.net/book/RLbook2020.pdf
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.85.041145
https://arxiv.org/abs/2012.03083


Algorithmic Game Theory, Autumn 2021 Week 13

We look at the time derivatives of the probabilities and using deyx

dx
= yeyx we get

ṗ(t)(a) =p(t)(a) · β
(
Q̇(t)(a)− EQ̇(t)

)
(11)

where EQ̇(t) =
∑

a′ p
(t)(a′) · Q̇(t)(a′)

Below we show that

Q̇(t)(a) = α(u
(t)
i (a)−Q(t)(a)) (12)

and thus

EQ̇(t) =α(Eu
(t)
i − EQ(t)) (13)

Stationarity condition

Q̇(t)(a) = EQ̇(t) (14)

which is equivalent to

u
(t)
i (a)− Eu(t)i = Q(t)(a)− EQ(t) (15)

Since

log p(t)(a) = βQ(t)(a)− logZ(t) (16)

we get

p(t)(a)−
∑
a′

p(t)(a)u
(t)
i (a) =

1

β
[log p(t)(a)−

∑
a′

p(t)(a′) log p(t)(a′)︸ ︷︷ ︸
−entropy H(p(t))

] (17)

A possible rewriting of this condition is

u
(t)
i (a)− 1

β
log p(t)(a) = Eu

(t)
i +

1

β
·H(p(t)) (18)

The following “noisy” best-response distribution yields a solution:1

p(t)(a) =
eβu

(t)
i (a)

Z(β)
Z(β) =

∑
a′∈Ai

eβu
(t)
i (a′) (19)

1This is usually called Gibbs distribution.

Version December 17, 2021 Page 6 of 8



Algorithmic Game Theory, Autumn 2021 Week 13

A Details and Calculations

A.1 Proof of (11)

We first compute the time derivatives of the probabilities in (9) using the following:

∂

∂t

(
ef(t)

g(t)

)
= ef(t) · g(t)f ′(t)− g′(t)

g(t)2
(20)

In our case we have

ṗ(t)(a)
(9)
=

∂

∂t

(
eβQ

(t)(a)

Z(t)

)
(20)
= eβQ

(t)(a) · Z(t) · βQ̇(t)(a)− Ż(t)

Z(t)2
(21)

(9)
= p(t)(a) · Z(t) · βQ̇(t)(a)− Ż(t)

Z(t)
= p(t)(a) ·

(
βQ̇(t)(a)− Ż(t)

Z(t)

)
(22)

and

Ż(t)
(20)
=
∑
a′

eβQ
(t)(a′) · β̇Q(t)(a′) =⇒ Ż(t)

Z(t)
= β

∑
a′

p(t)(a′) · Q̇(t)(a′) = βEQ̇(t) (23)

Thus (11) follows directly by combining the last two equalities.

A.2 Deriving (12)

Start from

Q(t+1)(a)−Q(t)(a) = α[u
(t)
i (a)−Q(t)(a)] (24)

and replace

t+ 1→ t+ δt and α→ αδt (25)

gives

Q(t+δt)(a)−Q(t)(a)

δt
= α[u

(t)
i (a)−Q(t)(a)] , (26)

and thus (12) follows by the definition of time derivative, Q̇(t)(a), is the limit of the left
hand side for δt→ 0.

A.3 Deriving (19)

Let us verify that (19) indeed satisfies (17):

log p(t)(a) = βu
(t)
i (a)− F where F = log

∑
a′

eβu
(t)
i (a′) (27)

Version December 17, 2021 Page 7 of 8



Algorithmic Game Theory, Autumn 2021 Week 13

hence

u
(t)
i (a)−

∑
a′

p(t)(a′)u
(t)
i (a′) =

1

β
(F + log p(t)(a))−

∑
a′

p(t)(a′)
1

β
(F + log p(t)(a′)) (28)

=
1

β
log p(t)(a)−

∑
a′

p(t)(a′)
1

β
(log p(t)(a′)) (29)

that is (17).

Version December 17, 2021 Page 8 of 8


	Generative Adversarial Networks (GANs)
	Statistical Physics
	Biology and Evolution
	Reinforcement Learning
	Details and Calculations
	Proof of (11)
	Deriving (12)
	Deriving (19)


