
Algorithmic Game Theory Autumn 2021, Week 2

Price of Anarchy

and

Hardness of Computing Equilibria

ETH Zürich Paolo Penna

We are going to talk about two things that contradict with each other :

1. We assume that selfish players will converge to (some) equilibrium, and therefore
we study the quality of (pure Nash) equilibria and show that they are not too far
from the optimum.

2. We then show that computing (pure Nash) equilibrium is computationally difficult,
not just for the players, but for a computer too.

We shall resolve this ‘contradiction’ in the next lecture, essentially by looking at a more
general (relaxed) equilibrium concept.

1 Price of Anarchy

Consider cost-minimization games, that is, the case in which each player i has a cost
ci(s). Here it is natural to consider the social cost of a state s as the sum of all players’
costs,1

cost(s) =
∑
i

ci(s).

We want to study this question:

How bad is selfish behavior?

Selfish behavior results in some equilibrium. The next example shows that this may not
be always the best in terms of social cost.

Example 1 (Pigou’s Example – Discrete Version). Consider the following symmet-
ric network congestion game with four players.

s t

1, 2, 3, 4

4, 4, 4, 4

There are five kinds of states:

1Other definitions are also meaningful, for example, the maximum cost incurred by any player.

Version : October 1, 2021 Page 1 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

(4) all four players use the top edge, social cost: 16

(3) three players use the top edge, one player uses the bottom edge, social cost: 13

(2) two players use the top edge, two players use the bottom edge, social cost: 12

(1) one player uses the top edge, three players use the bottom edge, social cost: 13

(0) all players use the bottom edge, social cost: 16

Observe that only states of kind (4) and (3) can be pure Nash equilibria. The social
cost, however, is minimized by states of kind (2). Therefore, when considering pure Nash
equilibria, due to selfish behavior, we lose up to a factor of 16

12
and at least a factor of 13

12
.

The Price of Anarchy compares the worst equilibrium with the optimum.

Definition 2 (Price of Anarchy). For a (cost-minimization) game which admits
pure Nash equilibria, the price of anarchy for pure Nash equilibria is defined as

PoA =
maxs∈PNE cost(s)

mins∈S cost(s)
,

where PNE is the set of pure Nash equilibria of this game.

1.1 Price of Anarchy in Smooth Games

A very helpful technique to derive upper bounds on the price of anarchy is smoothness.

Definition 3. A game is called (λ, µ)-smooth for λ > 0 and µ < 1 if, for every pair of
states s, s∗ ∈ S, we have∑

i

ci(s
∗
i , s−i) ≤ λ · cost(s∗) + µ · cost(s) .

Observe that this condition needs to hold for all states s, s∗ ∈ S, as opposed to only
pure Nash equilibria or only social optima. We consider the cost that each player incurs
when unilaterally deviating from s to his strategy in s∗. If the game is smooth, then we
can upper-bound the sum of these costs in terms of the social cost of s and s∗.

Theorem 4. In a (λ, µ)-smooth game, the PoA is at most

λ

1− µ
.

Proof. Let s be pure Nash equilibrium and s∗ be an optimum solution, which minimizes
social cost. Then:

cost(s) =
∑
i

ci(s) (definition of social cost)

≤
∑
i

ci(s
∗
i , s−i) (as s is a pure Nash equilibrium)

≤ λ · cost(s∗) + µ · cost(s) (by smoothness)

Version : October 1, 2021 Page 2 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

and by rearranging the terms we get

cost(s)

cost(s∗)
≤ λ

1− µ

for any pure Nash equilibrium s and any social optimum s∗. That is, PoA ≤ λ
1−µ .

1.2 Tight Bound for Affine Delay Functions

We next provide a tight bound on the price of anarchy for affine delay functions, that is,
when all delay functions are (non-decreasing) of the form

dr(x) =ar · x+ br,

with ar, br ≥ 0.

Theorem 5. Every congestion game with affine delay functions is
(

5
3
, 1

3

)
-smooth. Thus,

the PoA is upper bounded by 5
2

= 2.5.

We use the following lemma:

Lemma 6 (Christodoulou, Koutsoupias, 2005). For all nonnegative integers y, z ∈ Z we
have2

y(z + 1) ≤ 5

3
· y2 +

1

3
· z2 . (1)

Proof. Consider the following subcases (assume now y and z nonnegative):

• (y = 1) In this case (1) can be rewritten as

z ≤ 2

3
+

1

3
z2 (2)

which follows from (z−1)(z−2) ≥ 0 and from the hypothesis that z ≥ 0 is integer.

• (y ≥ 2) In this case we use y ≤ y2/2 and the following inequality:

yz ≤3

4
y2 +

1

3
z2 (3)

which follows from 0 ≤
(√

3
4
y −

√
1
3
z
)2

= 3
4
y2 + 1

3
z2 − yz. Putting these two

inequalities together, we get

y(z + 1) = yz + y ≤ 3

4
y2 +

1

3
z2 + y2/2 =

5

4
· y2 +

1

3
· z2

which is even more than what we need to prove (1).

This completes the proof.

2The lemma holds also for negative integers.

Version : October 1, 2021 Page 3 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

Remark 1. Though we do not need it, Lemma 6 holds also for negative integers. Namely,
for the case y ≤ 0, observe that the claim is trivial for y = 0 or z ≥ −1, because y(z+1) ≤
0 ≤ 5

3
· y2 + 1

3
· z2. For the case y < 0 and z < −1, we use that y(z+ 1) ≤ |y|(|z|+ 1) and

apply the bound for positive y and z shown above.

Main Steps of Proof :

cost(s) =
∑
i

ci(s) =
∑
r

nr(s)dr(s) =
∑
r

arnr(s)
2 + brnr(s) (4)∑

i

ci(s
∗
i , s−i) ≤

∑
r

(ar(nr(s) + 1) + br)nr(s
∗) (5)

ar(nr(s) + 1)nr(s
∗) ≤ 5

3
arnr(s

∗)2 +
1

3
arnr(s)

2 (6)

Proof of Theorem 5. Given two states s and s∗, we have to bound∑
i

ci(s
∗
i , s−i) .

We have
ci(s

∗
i , s−i) =

∑
r∈s∗i

dr(nr(s
∗
i , s−i)) .

Furthermore, as all dr are non-decreasing, we have dr(nr(s
∗
i , s−i)) ≤ dr(nr(s) + 1). This

way, we get ∑
i

ci(s
∗
i , s−i) ≤

∑
i

∑
r∈s∗i

dr(nr(s) + 1) .

By exchanging the sums, we have∑
i

∑
r∈s∗i

dr(nr(s) + 1) =
∑
r

∑
i:r∈s∗i

dr(nr(s) + 1) =
∑
r

nr(s
∗)dr(nr(s) + 1) .

To simplify notation, we write nr for nr(s) and n∗r for nr(s
∗). Recall that delays are

dr(nr) = arnr + br. In combination, we get∑
i

ci(s
∗
i , s−i) ≤

∑
r

(ar(nr + 1) + br)n
∗
r .

Let us consider the term for a fixed r. We have

(ar(nr + 1) + br)n
∗
r = ar(nr + 1)n∗r + brn

∗
r .

Lemma 6 implies that

(nr + 1)n∗r ≤
1

3
n2
r +

5

3
(n∗r)

2 .

Thus, we get

(ar(nr + 1) + br)n
∗
r ≤

1

3
arn

2
r +

5

3
ar(n

∗
r)

2 + brn
∗
r

≤ 1

3
arn

2
r +

1

3
brnr +

5

3
ar(n

∗
r)

2 +
5

3
brn
∗
r

=
1

3
(arnr + br)nr +

5

3
(arn

∗
r + br)n

∗
r ,

Version : October 1, 2021 Page 4 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

where in the second step we used that br ≥ 0. Summing up these inequalities for all
resources r, we get∑

r

(ar(nr + 1) + br)n
∗
r ≤

5

3

∑
r

(arn
∗
r + br)n

∗
r +

1

3

∑
r

(arnr + br)nr

=
5

3
· cost(s∗) +

1

3
· cost(s) ,

which shows
(

5
3
, 1

3

)
-smoothness.

Theorem 7. There are congestion games with affine delay functions whose price of an-
archy for pure Nash equilibria is 5

2
.

Proof sketch. We consider the following (asymmetric) network congestion game. Nota-
tion 0 or x on an edge means that dr(x) = 0 or dr(x) = x for this edge.

u

v w

x

0

x

0

x

x

There are four players with different source sink pairs. Refer to this table for a socially
optimal state of social cost 4 and a pure Nash equilibrium of social cost 10.

player source sink strategy in OPT cost in OPT strategy in PNE cost in PNE

1 u v u→ v 1 u→ w → v 3
2 u w u→ w 1 u→ v → w 3
3 v w v → w 1 v → u→ w 2
4 w v w → v 1 w → u→ v 2

2 Hardness of Computing Equilibria

We have seen that

• every congestion game has a pure Nash equilibrium, and

• in singleton congestion games pure Nash equilibria can be found in polynomially
many steps using (best response) improvement steps

What about more general congestion games? Do best response sequences always converge
in polynomial time? Or can we at least compute a pure Nash equilibrium using a different
algorithm in polynomial time? If we cannot, how would we give evidence of computational
intractability?

Version : October 1, 2021 Page 5 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

Why do we care? Positive results (like fast convergence of best response dynamics),
speak in favor of an equilbrium concept. Negative results, instead, cast a shadow on the
predictive power of an equilibrium concept (as the system may take very long time to
actually reach any equilibrium).

2.1 Polynomial-time Algorithm for Symmetric Network Games

An interesting mid-ground are symmetric network congestion games.

Definition 8. In a network congestion game, the set of resources is the set of edges E of
a directed graph G = (V,E). Player i’s strategies correspond to the set of paths between
a fixed si ∈ V and ti ∈ V .

Definition 9. A network congestion game is symmetric if all players share the same
source s ∈ V and have a common target t ∈ V.

It is known that there are instances of symmetric congestion games in which there are
states such that every improvement sequence from this state to a pure Nash equilibrium
has exponential length. Hence, applying improvement steps is not an efficient (i.e.,
polynomial time) algorithm for computing Nash equilibria in these games. However,
there is another algorithm which finds pure Nash equilibria in polynomial time.

Theorem 10 (Fabrikant, Papadimitriou, Talwar 2004). In symmetric network congestion
games with non-decreasing delays on each edge, a pure Nash equilibrium can be computed
in polynomial time.

Proof. Find a min-cost flow in the following graph (and the flow to be sent equals to n):

• Each edge is replaced by n parallel edges of capacity 1 each.

• The i-th copy of edge e has cost de(i), 1 ≤ i ≤ n.

s t

1, 2, 9

4, 5, 6

1, 9, 9

7, 8, 9

1, 2, 3

s t

1
2
9

4
5

6

991

7
8

9

1
2
3

In particular, we want to send n units of flow from s to t, where n is the number of
players. The optimal solution can be computed in polynomial time and, because of integer
capacities, flow, and costs, it is guaranteed to be take integer values (check literature).
Therefore, the optimal solution minimizes Rosenthal’s potential function and, hence, is
a pure Nash equilibrium (Exercise 1).

Exercise 1. Prove the last claim in the proof above, namely, that the optimum for the
min-cost flow indeed minimizes the potential. Discuss why we need the assumption that
delays are non-decreasing.

Version : October 1, 2021 Page 6 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

2.2 The Complexity Class PLS

It turns out that for more general congestion games, computing a pure Nash equilibrium
is a computationally hard problem. For this we will interpret the problem of finding a
pure Nash equilibrium as the problem of finding a local optimum, and we will show that
it is as hard as any other local search problem.

Definition 11. A local search problem Π is given by its set of instances IΠ. For every
instance I ∈ IΠ, we are given a finite set of feasible solutions F(I), an objective function
c : F(I)→ Z, and for every feasible solution s ∈ F(I), a neighborhood N(s, I) ⊆ F(I).
A feasible solution s ∈ F(I) is a local optimum if the objective value c(s) is at least as
good as the objective value c(s′) of every other feasible solution s′ ∈ N(s, I).

How hard is it to compute a local optimum?

In order to have some ‘hope’ for efficient algorithms, we should be at least able to compute
one ‘starting solution’, the cost of a current solution, and we should be able to ‘recognize’
a local optimum if for any reason we are given one.

Definition 12 (Johnson, Papadimitriou, Yannakakis 1988). A local search problem Π
belongs to the class PLS, for Polynomial Local Search, if the following polynomial-time
algorithms exist:

Algorithm A: Given an instance I ∈ IΠ, return a feasible solution s ∈ F(I).

Algorithm B: Given an instance I ∈ IΠ and a feasible solution s ∈ F(I), return the
objective value c(s).

Algorithm C: Given an instance I ∈ IΠ and a feasible solution s ∈ F(I), either certify
that s is a local optimum or return a solution s′ ∈ N(s, I) with better
objective value.

For every problem in PLS one can apply the following natural heuristic:

Local Search Algorithm

1. Use Algorithm A to find a feasible solution s ∈ F(I).

2. Iteratively, use Algorithm C to find a better feasible solution s′ ∈ N(s, I) until a
locally optimal solution is found.

Note that this local search procedure is guaranteed to terminate because there are
only finitely many candidate solutions, and in each iteration the objective function strictly
improves. However, because there can be exponentially many feasible solutions, the local
search algorithm need not run in polynomial time.

Question: For a given local search problem Π, is there a polynomial-time algorithm (not
necessarily local search) for finding a local optimum?

Version : October 1, 2021 Page 7 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

2.3 Max-Cut and PLS-Completeness

Definition 13 (Max-Cut). The search problem Max-Cut is defined as follows.

Instances: Graph G = (V,E) with edge weights w : E → N.
Feasible solutions: A cut, which partitions V into two sets Left and Right.
Objective function: The value of a cut is the weighted number of edges with one

endpoint in Left and one endpoint in Right.
Neighborhood: Two cuts are neighboring if one can obtain one from the

other by moving only one node from Left to Right or vice versa.

Observation 14 (Membership in PLS). Max-Cut is a PLS problem.

Example 15 (local vs global opt). Consider the following instance of Max-Cut:

v1 v2

v4

e1

e2

e3

e4Left Right

v3

e5 e6

Suppose the weights are

we1 = 1, we2 = 2, . . . , we6 = 6 .

Then the cut that separates Left = {v1, v4} from Right = {v2, v3} has a weight of 15. The
four neighboring cuts each separate one vertex from the other three vertices. These cuts
have weight 11, 8, 11, and 12. So the indicated cut is a local optimum but is not a
global optimum: the cut that separates v1, v2 from v3, v4 has weight 17.

Max-Cut unlike Min-Cut is an NP-hard problem, but we are not interested in a
globally optimal solution. We only want a local optimum. Intuitively, computing a
locally optimal solution should be easier. The next exercise provides a concrete example.

Exercise 2 (unweighted is easy). Consider Max-Cut in graphs G = (V,E) with weights
we = 1 for all e ∈ E. Computing a global optimum (a maximum cut) remains NP-hard
also under this restriction. Show that we can find a local optimum with the local search
algorithm in at most |E| steps.

Quite surprisingly, for Max-Cut in graphs with general weights no polynomial-time
algorithm for computing a local optimum is known; and we can show that this problem
is “as hard as” any other local search problem.

Definition 16 (PLS-reduction). Given two PLS problems Π1 and Π2, there is a PLS-
reduction (written Π1 ≤PLS Π2) if there are two polynomial-algorithms f and g:

• Algorithm f maps every instance I ∈ IΠ1 to an instance f(I) ∈ IΠ2.

Version : October 1, 2021 Page 8 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

IΠ1

s1

I1

F(I1)

s2

I2

F(I2)

? ?

f

g

IΠ2

Figure 1: Illustration of PLS-reductions.

• Algorithm g maps every local optimum s of f(I) ∈ IΠ2 to a local optimum g(s) of
I ∈ IΠ1.

As usual, one can read the symbol ≤PLS as “is not harder than”. The reduction
Π1 ≤PLS Π2 gives us a way to derive an algorithm for Π1 from an algorithm for Π2.

Definition 17 (PLS-completeness). A problem Π∗ in PLS is called PLS-complete if, for
every problem Π in PLS, it holds Π ≤PLS Π∗.

It is generally assumed that there are problems in PLS that cannot be solved in polyno-
mial time. For this reason, showing PLS-completeness effectively shows that presumably
there is no polynomial-time algorithm.

Theorem 18 (Schäffer and Yannakakis 1991). Max-Cut is PLS-complete.

As in the theory of NP-completeness, showing PLS-completeness requires an “initial”
PLS-complete problem. Such a problem was given by Johnson et al.; PLS-completeness
of other problems such as Max-Cut can then be established through reduction. It is worth
pointing out that in the original problem, local search takes (worst-case) exponential time
and that all known reductions preserve these bad instances.

2.4 Pure Nash in General Congestion Games is PLS-Complete

The problem of computing a pure Nash equilibrium in potential games can be naturally
regarded as a PLS problem:

Exercise 3 (Membership in PLS). Consider the problem of computing a pure Nash
equilibrium in potential games. Explain how this problem can be formulated as a PLS
problem (what is the set of instances, neighborhood, local optimum, etc.).

Recall that congestion games are also potential games.

Theorem 19. Max-Cut ≤PLS Pure Nash Equilibrium in Congestion Games

Version : October 1, 2021 Page 9 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

Proof. For this reduction, we have to map instances of Max-Cut to congestion games.
Given a graph G = (V,E) with edge weights w : E → N, this game is defined as follows.
Players correspond to the vertices V . For each edge e ∈ E, we add two resources rleft

e

and rright
e (see Figure 2(left)). The delays are defined by

drlefte
(k) = drrighte

(k) =

{
0 for k = 1

we for k ≥ 2
.

Each player v ∈ V has two strategies, namely either to choose all the “left” resources
for its incident edges {rleft

e | v ∈ e} or all the “right” resources for its incident edges
{rright

e | v ∈ e}.
This way, cuts in the graphs are in one-to-one correspondence to strategy profiles of

the game. A cut of weight W is mapped to a strategy profile of Rosenthal potential∑
e∈E we−W and vice versa. To see this, consider an edge e ∈ E. If its endpoints are in

different sets of the cut, its resources contribute nothing to the potential; if its endpoints
are in the same set, then the contribution is 0 + we = we.

v1 v2

v4 v3

rlefte1 rrighte1

0, we1

0, we1

0,
w

e
4

0,
w

e
4

0, we3

0, we3

0,
w

e
2

0,
w

e
2

0,
w e 50,
w e 5

0, w
e
6

0, w
e
6

(a) The instance derived from the
Max-Cut instance in Example 15.

v1 v2

v4 v3

rlefte1 rrighte1

0, we1

0, we1

0,
w

e
4

0,
w

e
4

0, we3

0, we3

0,
w

e
2

0,
w

e
2

0,
w e 50,
w e 5

0, w
e
6

0, w
e
6

(b) The state corresponding to the
cut in Example 15.

Figure 2: The main idea of the PLS-reduction from Max-Cut to congestion games. In the
congestion game instance, a player can either choose (a) All All red resources incident to
it – choose Left in Max-Cut or (b) All blue resources incident to it – choose Right in
Max-Cut. The partition in Example 15 into two sets (cut) corresponds to the state in
Figure 2b.

Consequently, local maxima of Max-Cut correspond to local minima of the Rosenthal
potential, which are exactly the pure Nash equilibria. Therefore, the second part of the
reduction is again trivial.

Note that the above reduction was to a congestion game in which the players’ strategy
sets are not identical (so it is asymmetric) and required strategies to be arbitrary subsets
of the resources (as opposed to, e.g., paths in a network). It turns out that either
restriction can be dropped and the problem remains PLS-complete:

• symmetric congestion games are still PLS-complete;

• network games are still PLS-complete.

Version : October 1, 2021 Page 10 of 12

Algorithmic Game Theory, Autumn 2021 Week 2

However, if we drop both conditions in the reduction we get symmetric network con-
gestion games which we can solve in polynomial time instead.

Related Literature

For the first part (PoA):

• B. Awerbuch, Y. Azar, A. Epstein. The Price of Routing Unsplittable Flow. STOC
2005. (PoA for pure NE in congestion games)

• G. Christodoulou, E. Koutsoupias. The Price of Anarchy of finite Congestion
Games. STOC 2005. (PoA for pure NE in congestion games)

• T. Roughgarden. Intrinsic Robustness of the Price of Anarchy. STOC 2009.
(Smoothness Framework and unification of previous results)

• T. Roughgarden. How bad is selfish routing? FOCS 2000. (PoA bound for non-
atomic congestion games)

For the second part (computing pure Nash equilibria):

• D. S. Johnson, C. H. Papadimitriou, M. Yannakakis. How easy is local search?
Journal of Computer and System Sciences, 37(1):79-100, 1988. (Class PLS, Cook-
Like Theorem for CircuitFlip)

• A. Fabrikant, C. H. Papadimitriou, K. Talwar. The complexity of pure Nash equi-
libria. STOC 2004. (First Proof of PLS-Completeness of Pure Nash in Congestion
Games)

• A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard
to solve. SIAM Journal on Computing, 20(1):56-87, 1991. (PLS-Completeness in
Congestion Games via Max-Cut)

• H. Ackermann, H. Röglin, B. Vöcking. On the impact of combinatorial structure
on congestion games. Journal of the ACM, 55(6), 2008. (Further Results on PLS-
Completeness)

A significant part of this notes is from previous years’ notes by Paul Dütting available
here:

• https://www.cadmo.ethz.ch/education/lectures/HS15/agt HS2015/index.html

Version : October 1, 2021 Page 11 of 12

https://www.cadmo.ethz.ch/education/lectures/HS15/agt_HS2015/index.html

Exercises

(during this exercise class - 5.10.2021)

We shall discuss and solve together these two exercises.

This exercise is about the upper bound on the time best response find a pure Nash
equilibrium in singleton congestion games (see Lecture 1 notes).

Exercise 4. I showed that Rosenthal’s potential function with respect to the new delays
d̄r(k) can be upper-bounded as follows:

Φ̄(s) =
m∑
r=1

nr(s)∑
k=1

d̄r(k) ≤
m∑
r=1

nr(s)∑
k=1

nm ≤ (nm)2 .

since we know that each d̄r(k) ≤ nm.

I am not very clever in the upper bound above. Look at it again and show that O(n2m)
is the correct bound.

We have seen an upper bound 5/2 on the price of anarchy for affine delays. With
this exercise we want to see if this assumption is needed (maybe the same holds for any
congestion game/any delay function).

Exercise 5. For every M ≥ 1, give an example of a two-player network congestion game
whose price of anarchy for pure Nash equilibria is at least M .

	Price of Anarchy
	Price of Anarchy in Smooth Games
	Tight Bound for Affine Delay Functions

	Hardness of Computing Equilibria
	Polynomial-time Algorithm for Symmetric Network Games
	The Complexity Class PLS
	Max-Cut and PLS-Completeness
	Pure Nash in General Congestion Games is PLS-Complete

