# **Advanced Machine Learning**

Fall 2021

Prof. Joachim M. Buhmann

## Final Exam

February 4th, 2022

| First and last name: |  |
|----------------------|--|
|                      |  |
| Student ID number:   |  |
|                      |  |
| Signature:           |  |

# **General Remarks**

- Please check that you have all 44 pages of this exam.
- You can acquire a maximum of 100 points.
- The exam lasts 180 minutes.
- Advice: Do not spend too much time on a single question. You do not need to secure 100 points to achieve the top grade.
- Remove all material which is not permitted by the examination regulations from your desk.
- Write your answers directly on the exam sheets. If you need more space, make sure you
  put your student ID number on top of each supplementary sheet.
- Immediately inform an assistant in case that you are not able to take the exam under regular conditions. Delayed complaints are not accepted.
- Attempts to cheat/defraud lead to immediate notification to the rector's office with a possible exclusion from the examination and it might entail judicial consequences.
- Use a **black** or a **blue** pen to answer the questions. Pencils or red/green colored pens are not allowed.
- Provide only one solution to each exercise. Invalid solutions have to be clearly and unambiguously cancelled.
- **Grading of true/false questions**: You will receive 1 point per correct answer, -1 point per incorrect answer, and 0 points for no answer with a minimum of 0 points per question.
- **Grading of multiple choice questions**: You receive 1 point per correct answer and 0 points per incorrect answer or unanswered question.

|       | Topic                          | Points | Points achieved | Checked |
|-------|--------------------------------|--------|-----------------|---------|
| 1     | Density estimation             | 12     |                 |         |
| 2     | Regression                     | 9      |                 |         |
| 3     | Bias-variance tradeoff         | 7      |                 |         |
| 4     | Linear methods                 | 8      |                 |         |
| 5     | Bayesian information criterion | 8      |                 |         |
| 6     | Convex optimization            | 8      |                 |         |
| 7     | SVMs                           | 8      |                 |         |
| 8     | Ensembles                      | 8      |                 |         |
| 9     | NP-Bayes                       | 8      |                 |         |
| 10    | PAC-learning                   | 12     |                 |         |
| 11    | Model selection                | 12     |                 |         |
| Total |                                | 100    |                 |         |

# Question 1: Density Estimation: Frequentist Linear Regression (12 pts)

Let  $Y \in \mathbb{R}$  be a random output variable and  $\mathbf{x} \in \mathbb{R}^d$  be a *fixed* vector of features. Assume the

following regression model:

| distribution of $Y \mid \mathbf{x}, \boldsymbol{\beta}$ . Write down its mean and variance.<br>$ \mathbf{2 \ pts} $ $ \mathcal{N} \left( \boldsymbol{\beta}^{\top} \mathbf{x},  \sigma^{2} \right). \text{ Since } Y = \boldsymbol{\beta}^{\top} \mathbf{x} + \boldsymbol{\epsilon} \text{ and } \boldsymbol{\epsilon} \sim \mathcal{N}(0,  \sigma^{2}), Y \text{ is normally-distributed; }                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Let $m{eta} \in \mathbb{R}^d$ is a fixed vector of regression parameters and $\epsilon \sim \mathcal{N}(0, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma^2$ ).                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| $\mathcal{N}\left(\boldsymbol{\beta}^{\top}\mathbf{x},\sigma^{2}\right).\mathrm{Since}Y=\boldsymbol{\beta}^{\top}\mathbf{x}+\boldsymbol{\epsilon}\mathrm{and}\boldsymbol{\epsilon}\sim\mathcal{N}(0,\sigma^{2}),Y\mathrm{isnormally-distributed};\\ \left[\boldsymbol{\beta}^{\top}\mathbf{x}+\boldsymbol{\epsilon}\right]=\boldsymbol{\beta}^{\top}\mathbf{x}+\mathbb{E}\left[\boldsymbol{\epsilon}\right]=\boldsymbol{\beta}^{\top}\mathbf{x};\mathrm{and}\mathbb{V}\left[Y\right]=\mathbb{V}\left[\boldsymbol{\beta}^{\top}\mathbf{x}+\boldsymbol{\epsilon}\right]=0+\mathbb{V}\left[\boldsymbol{\epsilon}\right]=\sigma^{2}.\\ \text{Wen a dataset}\mathcal{Z}=\left\{(\mathbf{x}_{i},y_{i})\right\}_{i=1}^{n},\mathrm{with}y_{i}\sim\mathbf{P}\left(Y \mathbf{x}_{i},\boldsymbol{\beta}\right).\mathrm{Writedownthelog-functionlog}\mathbf{P}\left(\mathcal{Z} \boldsymbol{\beta}\right).\mathrm{Youmaywriteituptothetermsconstantin}\boldsymbol{\beta}.\mathrm{Youethat}\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}\mathrm{arefixed}.$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                                                                                        |
| $\mathcal{N}\left(oldsymbol{eta}^{	op}\mathbf{x},\sigma^2 ight)$ . Since $Y=oldsymbol{eta}^{	op}\mathbf{x}+\epsilon$ and $\epsilon\sim\mathcal{N}(0,\sigma^2)$ , $Y$ is normally-distributed; $\left[oldsymbol{eta}^{	op}\mathbf{x}+\epsilon ight]=oldsymbol{eta}^{	op}\mathbf{x}+\mathbb{E}\left[\epsilon ight]=oldsymbol{eta}^{	op}\mathbf{x}$ ; and $\mathbb{V}\left[Y ight]=\mathbb{V}\left[oldsymbol{eta}^{	op}\mathbf{x}+\epsilon ight]=0+\mathbb{V}\left[\epsilon ight]=\sigma^2$ . Wen a dataset $\mathcal{Z}=\{(\mathbf{x}_i,y_i)\}_{i=1}^n$ , with $y_i\sim\mathbf{P}\left(Y \mathbf{x}_i,eta ight)$ . Write down the log-function $\log\mathbf{P}\left(\mathcal{Z} eta ight)$ . You may write it up to the terms constant in $oldsymbol{eta}$ . You e that $\{\mathbf{x}_i\}_{i=1}^n$ are fixed.                                                                                                                                                                                                                              | Derive the distribution of $Y \mid \mathbf{x}, \boldsymbol{\beta}$ . Write down its mean and varia                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ance.                                                                                    |
| $\begin{bmatrix} \boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon} \end{bmatrix} = \boldsymbol{\beta}^{\top}\mathbf{x} + \mathbb{E}\left[\boldsymbol{\epsilon}\right] = \boldsymbol{\beta}^{\top}\mathbf{x}; \text{ and } \mathbb{V}\left[Y\right] = \mathbb{V}\left[\boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon}\right] = 0 + \mathbb{V}\left[\boldsymbol{\epsilon}\right] = \sigma^{2}.$ Wen a dataset $\mathcal{Z} = \{(\mathbf{x}_{i}, y_{i})\}_{i=1}^{n}$ , with $y_{i} \sim \mathbf{P}\left(Y \mid \mathbf{x}_{i}, \boldsymbol{\beta}\right)$ . Write down the log-function $\log \mathbf{P}\left(\mathcal{Z} \mid \boldsymbol{\beta}\right)$ . You may write it up to the terms constant in $\boldsymbol{\beta}$ . You e that $\{\mathbf{x}_{i}\}_{i=1}^{n}$ are fixed.                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 pts                                                                                    |
| V -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
| $\begin{bmatrix} \boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon} \end{bmatrix} = \boldsymbol{\beta}^{\top}\mathbf{x} + \mathbb{E}\left[\boldsymbol{\epsilon}\right] = \boldsymbol{\beta}^{\top}\mathbf{x}; \text{ and } \mathbb{V}\left[Y\right] = \mathbb{V}\left[\boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon}\right] = 0 + \mathbb{V}\left[\boldsymbol{\epsilon}\right] = \sigma^{2}.$ Wen a dataset $\mathcal{Z} = \{(\mathbf{x}_{i}, y_{i})\}_{i=1}^{n}$ , with $y_{i} \sim \mathbf{P}\left(Y \mid \mathbf{x}_{i}, \boldsymbol{\beta}\right)$ . Write down the log-function $\log \mathbf{P}\left(\mathcal{Z} \mid \boldsymbol{\beta}\right)$ . You may write it up to the terms constant in $\boldsymbol{\beta}$ . You e that $\{\mathbf{x}_{i}\}_{i=1}^{n}$ are fixed.                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
| $\begin{bmatrix} \boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon} \end{bmatrix} = \boldsymbol{\beta}^{\top}\mathbf{x} + \mathbb{E}\left[\boldsymbol{\epsilon}\right] = \boldsymbol{\beta}^{\top}\mathbf{x}; \text{ and } \mathbb{V}\left[Y\right] = \mathbb{V}\left[\boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon}\right] = 0 + \mathbb{V}\left[\boldsymbol{\epsilon}\right] = \sigma^{2}.$ Wen a dataset $\mathcal{Z} = \{(\mathbf{x}_{i}, y_{i})\}_{i=1}^{n}$ , with $y_{i} \sim \mathbf{P}\left(Y \mid \mathbf{x}_{i}, \boldsymbol{\beta}\right)$ . Write down the log-function $\log \mathbf{P}\left(\mathcal{Z} \mid \boldsymbol{\beta}\right)$ . You may write it up to the terms constant in $\boldsymbol{\beta}$ . You e that $\{\mathbf{x}_{i}\}_{i=1}^{n}$ are fixed.                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
| $\begin{bmatrix} \boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon} \end{bmatrix} = \boldsymbol{\beta}^{\top}\mathbf{x} + \mathbb{E}\left[\boldsymbol{\epsilon}\right] = \boldsymbol{\beta}^{\top}\mathbf{x}; \text{ and } \mathbb{V}\left[Y\right] = \mathbb{V}\left[\boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon}\right] = 0 + \mathbb{V}\left[\boldsymbol{\epsilon}\right] = \sigma^{2}.$ Wen a dataset $\mathcal{Z} = \{(\mathbf{x}_{i}, y_{i})\}_{i=1}^{n}$ , with $y_{i} \sim \mathbf{P}\left(Y \mid \mathbf{x}_{i}, \boldsymbol{\beta}\right)$ . Write down the log-function $\log \mathbf{P}\left(\mathcal{Z} \mid \boldsymbol{\beta}\right)$ . You may write it up to the terms constant in $\boldsymbol{\beta}$ . You e that $\{\mathbf{x}_{i}\}_{i=1}^{n}$ are fixed.                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
| $\begin{bmatrix} \boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon} \end{bmatrix} = \boldsymbol{\beta}^{\top}\mathbf{x} + \mathbb{E}\left[\boldsymbol{\epsilon}\right] = \boldsymbol{\beta}^{\top}\mathbf{x}; \text{ and } \mathbb{V}\left[Y\right] = \mathbb{V}\left[\boldsymbol{\beta}^{\top}\mathbf{x} + \boldsymbol{\epsilon}\right] = 0 + \mathbb{V}\left[\boldsymbol{\epsilon}\right] = \sigma^{2}.$ Wen a dataset $\mathcal{Z} = \{(\mathbf{x}_{i}, y_{i})\}_{i=1}^{n}$ , with $y_{i} \sim \mathbf{P}\left(Y \mid \mathbf{x}_{i}, \boldsymbol{\beta}\right)$ . Write down the log-function $\log \mathbf{P}\left(\mathcal{Z} \mid \boldsymbol{\beta}\right)$ . You may write it up to the terms constant in $\boldsymbol{\beta}$ . You e that $\{\mathbf{x}_{i}\}_{i=1}^{n}$ are fixed.                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
| ven a dataset $\mathcal{Z} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , with $y_i \sim \mathbf{P}(Y   \mathbf{x}_i, \boldsymbol{\beta})$ . Write down the log-function $\log \mathbf{P}(\mathcal{Z}   \boldsymbol{\beta})$ . You may write it up to the terms constant in $\boldsymbol{\beta}$ . You e that $\{\mathbf{x}_i\}_{i=1}^n$ are fixed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Y \mid \mathbf{x},  \boldsymbol{\beta} \sim \mathcal{N}\left(\boldsymbol{\beta}^{\top}\mathbf{x},  \sigma^{2}\right)$ . Since $Y = \boldsymbol{\beta}^{\top}\mathbf{x} + \epsilon$ and $\epsilon \sim \mathcal{N}(0,  \sigma^{2})$ , $Y \mid \mathbf{x} \mid Y \mid = \mathbb{E}\left[\boldsymbol{\beta}^{\top}\mathbf{x} + \epsilon\right] = \boldsymbol{\beta}^{\top}\mathbf{x} + \mathbb{E}\left[\epsilon\right] = \boldsymbol{\beta}^{\top}\mathbf{x}$ : and $\mathbb{V}\left[Y\right] = \mathbb{V}\left[\boldsymbol{\beta}^{\top}\mathbf{x}\right]$ | is normally-distributed; $\mathbf{x} + \epsilon = 0 + \mathbb{V}[\epsilon] = \sigma^2$ . |
| function $\log \mathbf{P}\left(\mathcal{Z} \boldsymbol{\beta}\right)$ . You may write it up to the terms constant in $\boldsymbol{\beta}$ . You e that $\{\mathbf{x}_i\}_{i=1}^n$ are fixed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                        |
| e that $\{\mathbf x_i\}_{i=1}^n$ are fixed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
| 3 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | likelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                            | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | likelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                            | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | likelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                            | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ikelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                             | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ikelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                             | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Assume given a dataset $\mathcal{Z} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , with $y_i \sim \mathbf{P}(Y   \mathbf{x}_i, \mathcal{L}_i)$                                                                                                                                                                                                                                                                                                                                                                                                                      | $\boldsymbol{\beta}$ ). Write down the                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ikelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                             | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | elihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                               | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | elihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                               | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | elihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                               | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | elihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                               | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kelihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms constant in $oldsymbol{eta}$ . You                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lihood function $\log \mathbf{P}\left(\mathcal{Z}   oldsymbol{eta} ight)$ . You may write it up to the ter                                                                                                                                                                                                                                                                                                                                                                                                                                                | ms constant in $oldsymbol{eta}$ . You                                                    |

.....

$$\mathbf{P}\left(\mathcal{Z} \mid \boldsymbol{\beta}\right) = \prod_{i=1}^{n} p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}\right).$$

$$\log \mathbf{P}\left(\mathcal{Z} \mid \boldsymbol{\beta}\right) = \log\left(\prod_{i=1}^{n} p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}\right)\right) = \sum_{i=1}^{n} \log\left\{\frac{1}{\sigma\sqrt{2\pi}} \exp^{-\frac{1}{2}\left(\frac{y_{i} - \boldsymbol{\beta}^{\top} \mathbf{x}_{i}}{\sigma}\right)^{2}}\right\} = \operatorname{const}_{1} + \sum_{i=1}^{n} -\frac{1}{2\sigma^{2}} \left(y_{i} - \boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right)^{2} = \operatorname{const}_{1} - \operatorname{const}_{2} \sum_{i=1}^{n} \left(y_{i} - \boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right)^{2}.$$

| Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the design matrix with rows given by $\mathbf{x}_i$ from $\mathcal{Z}$ and let $\mathbf{y} = (y_1,, y_n)^{\top}$ .                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demonstrate that the MLE for $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}_{ML}^n = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}$ . You may assume $\mathbf{X}^{\top}\mathbf{X}$ to be invertible.                                                                                                                                                      |
| 3 pts                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                         |
| $\hat{\boldsymbol{\beta}}_{ML}^{n} = \arg \max_{\boldsymbol{\beta}} \mathbf{P} \left( \mathcal{Z}     \boldsymbol{\beta} \right) = \arg \max_{\boldsymbol{\beta}} \left\{ -\sum_{i=1}^{n} \left( y_{i} - \boldsymbol{\beta}^{\top} \mathbf{x}_{i} \right)^{2} \right\} = \arg \min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \left( y_{i} - \boldsymbol{\beta}^{\top} \mathbf{x}_{i} \right)$ |
| $\arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^{\top} \mathbf{x}_i)^2 = \arg\min_{\boldsymbol{\beta}} \ \mathbf{X}\boldsymbol{\beta} - \mathbf{y}\ _2^2 =: \arg\min_{\boldsymbol{\beta}} \mathcal{L}_{\boldsymbol{\beta}}.$                                                                                                                                    |

$$\begin{split} &\frac{\partial \mathcal{L}_{\boldsymbol{\beta}}}{\partial \boldsymbol{\beta}} = 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} - 2\mathbf{X}^{\top}\mathbf{y}. \text{ For } \hat{\boldsymbol{\beta}}_{ML}^{n}, \ 2\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}}_{ML}^{n} - 2\mathbf{X}^{\top}\mathbf{y} \stackrel{!}{=} 0. \\ &\hat{\boldsymbol{\beta}}_{ML}^{n} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}. \end{split}$$

| What is the distribution of $\beta_{ML}^n$ ? Derive the distribution's parameters and sh is an unbiased estimator of $\beta$ .                                                                      | ow that | $oldsymbol{eta}_{ML}^n$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|
|                                                                                                                                                                                                     | 4 pts   |                         |
|                                                                                                                                                                                                     | 7 pts   |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
|                                                                                                                                                                                                     |         |                         |
| Recall that $Y \mid \mathbf{x}, \boldsymbol{\beta} \sim \mathcal{N}\left(\boldsymbol{\beta}^{\top}\mathbf{x}, \sigma^{2}\right)$ . Then $\hat{\boldsymbol{\beta}}_{ML}^{n}$ should follow a multive | /ariate | Gaus-                   |

sian distribution with the mean  $\mathbb{E}\left[\hat{\boldsymbol{\beta}}_{ML}^{n}\right] = \mathbb{E}\left[\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}\right] = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbb{E}\left[\mathbf{y}\right] = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbb{E}\left[\mathbf{X}\boldsymbol{\beta} + \epsilon\right] = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\left(\mathbf{X}\boldsymbol{\beta} + \mathbb{E}\left[\epsilon\right]\right) = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta} \text{ and covariance } \mathbb{V}\left[\hat{\boldsymbol{\beta}}_{ML}^{n}\right] = \mathbb{V}\left[\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}\right] = \mathbb{V}\left[\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\left(\mathbf{X}\boldsymbol{\beta} + \epsilon\right)\right] = 0 + \mathbb{V}\left[\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbb{V}\left[\epsilon\right] = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbb{I}_{d}\sigma^{2} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\sigma^{2},$  where  $\boldsymbol{\epsilon} \sim \mathcal{N}_{d}\left(\mathbf{0}, \, \mathbb{I}_{d}\sigma^{2}\right)$  is a vector with i.i.d. noise terms. Thus,  $\hat{\boldsymbol{\beta}}_{ML}^{n} \sim \mathcal{N}_{d}\left(\boldsymbol{\beta}, \, \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\sigma^{2}\right).$   $\hat{\boldsymbol{\beta}}_{ML}^{n}$  is an unbiased estimator  $\boldsymbol{\beta}$ , since  $\mathbb{E}\left[\hat{\boldsymbol{\beta}}_{ML}^{n}\right] = \boldsymbol{\beta}$ .

## Grading scheme a

- -2 (-1) if (minor) conceptual mistake / incorrect derivation
- -0.5 if mixed scalar and matrix notation (i.e. gave  $I_d\sigma$ )

b

- -1 for not logging
- ullet -2 if given general p(y|x) form, unless expanded later
- -1 if given  $N(y_i|x_i)$ , unless expanded later
- -0.5 for minor errors in derivation (signs, no  $\infty$ )
- -1 if mix scalar and matrix notation

С

- ullet -2 if they invert with  $x^T$
- -1 for minor derivation mistakes (eg signs, transpose mistakes)

d

- +2 for  $E[\beta]$  and +1 for just unbiased definition
- +2 for  $Var[\beta]$ . -1 if  $Var[\beta]$  is derived incorrectly. -2 if larger mistakes in derivation (eg not understanding matrix properties)

## Question 2: Regression (9 pts)

We continue with the same notation as in Question 1.

• Are the following claims true or false?

4 pts

1. Consider the regression model  $Y = f(\mathbf{x}, \boldsymbol{\beta}) + \epsilon = \beta_0 + \beta_1 x_1 + \beta_2 x_2^2 + \beta_3 \log x_3 + \epsilon$  with i.i.d. error terms  $\epsilon \sim \mathcal{N}(0, \sigma^2)$ . We can obtain an unbiased estimator of the coefficients  $\boldsymbol{\beta}$  by fitting the linear least-squares regression on the appropriately transformed  $x_1, x_2, x_3$ .

 $\square$  True  $\square$  False

True.

2. For any two random variables X and  $Y \arg\min_g \mathbb{E}[(Y-g(X))^2] = \mathbb{E}[Y\mid X]$ .

☐ True ☐ False

True.

3. Assume that  $Y = \mathbf{x}^{\top} \boldsymbol{\beta} + \epsilon$ . The least-squares estimator  $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$  has the smallest variance among all estimators of  $\boldsymbol{\beta}$  of the form  $\mathbf{C}\mathbf{y}$ , for some  $\mathbf{C} \in \mathbb{R}^{d \times n}$ 

 $\square$  True  $\square$  False

False. Consider the ridge estimator.

4. For the least-squares estimator  $\hat{\beta}$  above to exist, no column of the design matrix X must be a linear combination of other columns.

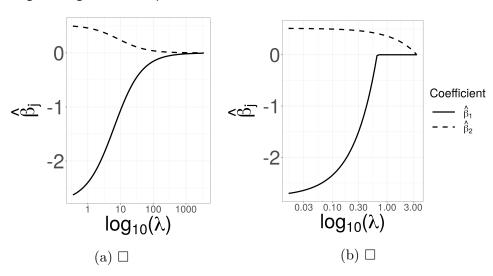
☐ True ☐ False

True.

• Choose the correct answer.

5 pts

1. Consider LASSO and ridge regression with two features. Which of the plots below shows the estimated regression coefficients  $\hat{\beta}$  across varying regularization parameter  $\lambda$  for the LASSO regression (one plot correponds to LASSO and another to ridge)? Note: each curve corresponds to the values of a single estimated coefficient across a range of regularization parameter values.



(b)

2. Consider the closed form solution for ridge regression  $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbb{I}_d)^{-1}\mathbf{X}^{\top}\mathbf{y}$ . The estimator  $\hat{\beta}^{\text{ridge}}$  follows

- $\Box$  a normal distribution with the mean  $oldsymbol{\beta}$
- $\Box$  a normal distribution with the mean  $\mathbf{\dot{\left(X^{\top}X+\lambda\mathbb{I}_{d}\right)}^{-1}X^{\top}X}\boldsymbol{\beta}$
- $\square$  an unknown distribution with the mean  $\left(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbb{I}_{d}\right)^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta}$

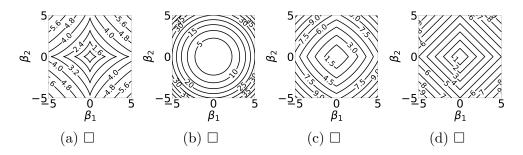
A normal distribution with the mean  $(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbb{I}_d)^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta}$ .

3. LASSO regression is equivalent to the MAP estimator in Bayesian linear regression with the prior on  $\beta_i$  given by

- $\Box$  a Laplace distribution with the location parameter 0 and scale parameter  $\frac{2\sigma^2}{\lambda}$
- $\Box$  a normal distribution with the mean 0 and variance  $\frac{\sigma^2}{\lambda}$
- $\Box$  a Cauchy distribition with the mean 0 and variance  $\frac{\hat{\sigma}^2}{\lambda}$

A Laplace distribution with the location parameter 0 and scale parameter  $\frac{2\sigma^2}{\lambda}$ .

4. Consider  $\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \left\{ \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_2^2 + \lambda_2 \|\boldsymbol{\beta}\|_2^2 + \lambda_1 \|\boldsymbol{\beta}\|_1 \right\}$ , where  $\lambda_1, \lambda_2 \geq 0$  are regularization parameters. Which of the plots below depicts the level sets of the penalty term  $\lambda_2 \|\boldsymbol{\beta}\|_2^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$  for 2 features,  $\lambda_2 = 0.1$ , and  $\lambda_1 = 0.9$ ?



(c)

5. An astrologist wants to predict the life expectancy of her clients. She considers computing the least-squares estimator  $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$  for linear regression with an intercept term and four binary features coding whether a client was born in the corresponding season (spring, summer, autumn, and winter). Her dataset contains at least 5 clients. Which statement is true?

 $\Box$  The least-squares estimator exists, however, the ridge regression estimator would have a lower test MSE in this setting.

- ☐ The least-squares estimator exists, however, least-squares linear regression is not appropriate for datasets with categorically-valued features.
- $\Box$  The least-squares estimator does not exist, since the features are collinear.

The least-squares estimator does not exist, since the features are collinear.

# Question 3: Bias-variance tradeoff (7 pts)

Consider a classification problem where we want to predict labels  $y \in \mathcal{Y}$  from features  $x \in \mathcal{X}$  using a finite data set  $D_n = \{(x_i, y_i)_{i=1}^n\}$ . We use the term *estimator* to refer to any function  $f: \mathcal{X} \to \mathcal{Y}$ .

|     | t $f_{ERM}$ be the empirical risk minimizer over a certain hypothesis class. List the sto reduce the variance of $\hat{f}_{ERM}$ .                                                                                                             | ree m           | າeth-        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 0   | 1   m p                                                                                                                                                                                                                                        | ots [           |              |
|     |                                                                                                                                                                                                                                                |                 |              |
|     |                                                                                                                                                                                                                                                |                 |              |
|     |                                                                                                                                                                                                                                                |                 |              |
|     |                                                                                                                                                                                                                                                |                 |              |
| in  | llecting more data, increasing/adding regularization, increasing model size we erpolation (double descent), reducing model complexity, performing feature ading: $+0.5$ first answer, $+0.25$ second answer, $+0.25$ third answer. No negation | selec           | tion.        |
| • A | e the following claims true or false?                                                                                                                                                                                                          |                 |              |
|     | 6 р                                                                                                                                                                                                                                            | its             |              |
|     | . Reducing the bias of any estimator $f:\mathcal{X}\to\mathcal{Y}$ increases its variance. $\square$ True $\square$ False                                                                                                                      |                 |              |
|     | . Consider an SVM estimator that uses an RBF kernel $k(x,z)=\exp(-\gamma\ \cdot\ )$ Decreasing the value of the coefficient $\gamma$ leads to a lower variance. $\square$ True $\square$ False True.                                           | x - z           | $z\ ^{2}$ ). |
|     | <ul> <li>If an estimator interpolates the training data (i.e. achieves 0 training error) t poor generalization (i.e. high test error).</li> <li>□ True □ False</li> <li>False.</li> </ul>                                                      | hen it          | t has        |
|     | . Boosting and bagging reduce both the bias and the variance of the individua                                                                                                                                                                  | al est          | ima-         |
|     | tors.  □ True □ False  False.                                                                                                                                                                                                                  |                 |              |
|     | . Consider a finite-sample data set with noiseless samples. In this case, into the data is sufficient for good generalization.  ☐ True ☐ False False.                                                                                          | erpola          | ating        |
|     | . Increasing the sample size $n$ reduces the variance of any estimator $f:\mathcal{X}\to\Box$ True $\Box$ False                                                                                                                                | $\mathcal{Y}$ . |              |

False, e.g. the empirical count estimator for number of heads of a coin toss.

## Question 4: Linear Methods (8 pts)

Assume given a dataset  $\mathcal{Z} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$  where  $\mathbf{x}_i \in \mathbb{R}^d$  are features and  $y_i \in \{0, 1\}$  are labels, for  $1 \le i \le n$ . Let  $\mathcal{C}_0 = \{i : y_i = 0, 1 \le i \le n\}$  and  $\mathcal{C}_1 = \{i : y_i = 1, 1 \le i \le n\}$ .

• Which of the following classification methods are (a) generative, (b) probabilistic discriminative, (c) discriminative? Put the correct letter ('a', 'b' or 'c') next to each method.

2 pts

- 1. Perceptron
- 2. Logistic regression
- 3. A maximum likelihood approach modeling class-conditional densities and class priors
- 4. Fisher's linear discriminant with a threshold for classifying projected data points

1 - c, 2 - b, 3 - a, 4 - c.

• Assume given class-conditional densities for features  $\mathbf x$  denoted by  $p\left(\mathbf x\,|\,y=k\right)$  and class prior probabilities  $p\left(y=k\right)$ , for  $k\in\{0,1\}$ . Derive an expression for the posterior probability  $p\left(y=0\,|\,\mathbf x\right)$  in terms of class-conditional densities and class prior probabilities.

By Bayes' theorem,  $p\left(y=0\,|\,\mathbf{x}\right)=\frac{p(\mathbf{x}\,|\,y=0)p(y=0)}{p(\mathbf{x})}=\frac{p(\mathbf{x}\,|\,y=0)p(y=0)}{p(\mathbf{x}\,|\,y=0)p(y=0)+p(\mathbf{x}\,|\,y=1)p(y=1)}.$ 

For the remainder of this question, we will focus on Fisher's linear discriminant. Recall that Fisher's linear discriminant is given by a weight vector  $\mathbf{w} \in \mathbb{R}^d$  maximizing the criterion

$$J(\mathbf{w}) = \frac{\left(\mathbf{w}^{\top} \mathbf{m}_{1} - \mathbf{w}^{\top} \mathbf{m}_{0}\right)^{2}}{\sum_{k \in \{0,1\}} \sum_{i \in \mathcal{C}_{k}} \left(\mathbf{w}^{\top} \mathbf{x}_{i} - \mathbf{w}^{\top} \mathbf{m}_{k}\right)^{2}},$$
(2)

where  $\mathbf{m}_k = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} \mathbf{x}_i$ , for  $k \in \{0, 1\}$ . We will consider a classifier constructed by applying a threshold to the projected data points  $\mathbf{w}^{\top} \mathbf{x}_i$ .

ullet Explain the meaning of the numerator and denominator in the criterion  $J(\mathbf{w})$  above.

2 pts

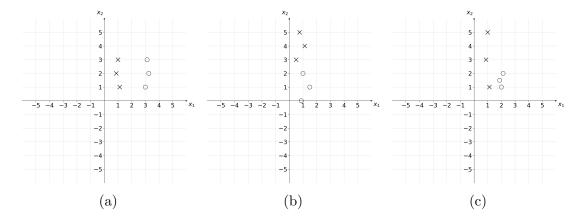
.....

.....

Numerator corresponds to the separability of the projected class centroids; denominator corresponds to the scatter of the projected data points within each class.

• Consider two alternative criteria  $J^{(1)}(\mathbf{w}) = \left(\mathbf{w}^{\top}\mathbf{m}_{1} - \mathbf{w}^{\top}\mathbf{m}_{0}\right)^{2}$  and  $J^{(2)}(\mathbf{w}) = \frac{1}{\sum_{k \in \{0,1\}} \sum_{i \in \mathcal{C}_{k}} \left(\mathbf{w}^{\top}\mathbf{x}_{i} - \mathbf{w}^{\top}\mathbf{m}_{k}\right)^{2}}$ . The plots below depict three different datasets. Symbols '×' and 'o' denote classes 0 and 1, respectively. For  $\mathbf{w}$  maximizing  $J^{(1)}(\mathbf{w})$ , for which dataset would the projected data points  $\mathbf{w}^{\top}\mathbf{x}_{i}$  not be linearly separable? For which dataset would the projected data points  $\mathbf{w}^{\top}\mathbf{x}_{i}$  not be linearly separable when maximizing  $J^{(2)}(\mathbf{w})$ ? Write down the letter of the corresponding dataset next to the appropriate criterion.

1 pts

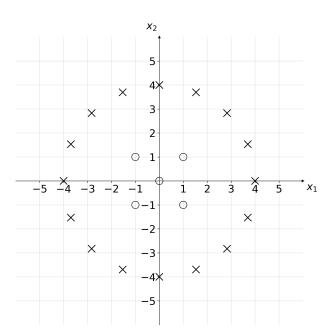


$$J^{(1)}(\cdot)$$
 \_\_\_\_\_

$$J^{(2)}(\cdot)$$
 \_\_\_\_\_

 $J^{(1)}(\mathbf{w})$  fails for (c);  $J^{(2)}(\mathbf{w})$  fails for (b).

• Consider another dataset plotted below. How many solutions are there maximizing Fisher's criterion  $J(\mathbf{w})$ ? Justify your answer.



| 2 | pts |  |
|---|-----|--|

| ٠.   | • | <br> | <br>• |  |      | <br> | • |  |  | ٠. | • | • | <br>• | <br>• | • | <br>• |  | • |  |  | • | <br>• | <br>• |  | <br>• | <br> |  |  |  |  |      |  |
|------|---|------|-------|--|------|------|---|--|--|----|---|---|-------|-------|---|-------|--|---|--|--|---|-------|-------|--|-------|------|--|--|--|--|------|--|
|      |   | <br> |       |  | <br> | <br> |   |  |  |    |   |   |       |       |   |       |  |   |  |  |   |       |       |  |       | <br> |  |  |  |  |      |  |
| <br> |   | <br> |       |  | <br> | <br> |   |  |  |    |   |   |       |       |   |       |  |   |  |  |   |       |       |  |       | <br> |  |  |  |  | <br> |  |
| <br> |   | <br> |       |  | <br> | <br> |   |  |  |    |   |   |       |       |   |       |  |   |  |  |   |       |       |  |       | <br> |  |  |  |  | <br> |  |
|      |   |      |       |  |      |      |   |  |  |    |   |   |       |       |   |       |  |   |  |  |   |       |       |  |       |      |  |  |  |  |      |  |
|      |   |      |       |  |      |      |   |  |  |    |   |   |       |       |   |       |  |   |  |  |   |       |       |  |       |      |  |  |  |  |      |  |
|      |   |      |       |  |      |      |   |  |  |    |   |   |       |       |   |       |  |   |  |  |   |       |       |  |       |      |  |  |  |  |      |  |
|      |   | <br> | <br>• |  | <br> | <br> | - |  |  |    |   |   |       |       |   |       |  |   |  |  |   |       |       |  |       | <br> |  |  |  |  |      |  |

There are infinitely many optimal projection lines. Any  $\mathbf{w} \in \mathbb{R}^2$  maximizes  $J(\mathbf{w})$ . Observe that  $J(\mathbf{w}) = 0$  for any  $\mathbf{w} \in \mathbb{R}^2$ , since  $\mathbf{m}_0 = \mathbf{m}_1 = \mathbf{0}$  and the numerator of  $J(\mathbf{w})$  is always

## Grading scheme

equal-to 0.

- $\bullet$  +0.5 points for each correct answer. No penalty for the wrong one.
- Full 1 point for the correct formula. 0.5 points if demominator is only written as p(x).
- ullet + 1 points for correct answer for each meaning. It should not be exact as in the solution but the idea of what nomination and denominator mean should be correct.

- $\bullet\ +0.5$  points for each correct answer. No penalty for the wrong one.
- ullet +1 points for correct answer (infinitely many solutions) and +1 point for the correct explanation. If the answer is wrong then 0 points.

## Question 5: Bayesian information criterion (BIC) (8 pts)

All subquestions here are independent. You do not need to have solved the previous ones to solve the next.

Assume that a dataset  $\mathbf{X}$  is given and that we want to estimate the parameter of a model  $\{p(\cdot\mid\theta)\mid\theta\in\mathbb{R}^k\}$ . In this question, we ask you to reproduce the derivation of the BIC in the lecture. The BIC is defined by the formula  $-\log p(\mathbf{X}\mid\theta^{ML})+\frac{k}{2}\log n$ , where n is the number of examples in the dataset  $\mathbf{X}$  and k is the number of entries in  $\theta^{ML}$ , the maximum likelihood estimator.

We start from a Bayesian perspective. Write  $p(\mathbf{X})$  in terms of the likelihood  $p(\mathbf{X} \mid \theta)$  and a prior  $p(\theta)$ , here  $\theta$  is a variable denoting a parameter.

$$p(\mathbf{X}) = \int p(\mathbf{X} \mid \theta) p(\theta) d\theta. \tag{3}$$

Grading: +1 points for correct solution and +0.25 points if sum is written instead of integral. 0 points otherwise.

Assume that we use a very flat prior. Demonstrate that

$$p(\mathbf{X}) \approx \text{const } n^{-k/2} p(\mathbf{X} \mid \theta^{ML}).$$
 (4)

Hint: You may use the following facts without proof.

- $-I_n(\theta)$  is the Hessian of  $\log p(\mathbf{X} \mid \theta)$  with respect to  $\theta$ , where  $I_n(\theta)$  is the Fisher information computed for  $\mathbf{X}$  and  $\theta$ . You may assume it is invertible.
- The normalization constant of  $\mathcal{N}(\mu, \Sigma)$  is  $|2\pi\Sigma|^{1/2}$ .
- $|I(\theta^{ML})|$  is a constant.
- You may assume that second-order Taylor approximations are exact.
- It can be shown that the prior  $p(\cdot)$  can be replaced with a constant over  $\mathbb{R}^k$ .

| 6 pts |  |
|-------|--|
|       |  |
| <br>  |  |
| <br>  |  |
|       |  |
| <br>  |  |

| <br> | <br> |
|------|------|
| <br> | <br> |

The Taylor approximation is the following:

$$\log p(\mathbf{X} \mid \theta) \approx \log p(\mathbf{X} \mid \theta^{ML}) + (\theta - \theta^{ML})^{\top} \nabla \log p(\mathbf{X} \mid \theta^{ML}) - \frac{1}{2} (\theta - \theta^{ML})^{\top} I_n(\theta^{ML}) (\theta - \theta^{ML}).$$
(5)

The linear term vanishes as  $\nabla \log p(\mathbf{X} \mid \theta^{ML}) = 0$ . Replacing this into Equation 3 and substituting  $p(\theta)$  with a constant yields

$$p(\mathbf{X}) \approx \text{const} \int \exp\left(\log p(\mathbf{X} \mid \theta^{ML}) - \frac{1}{2} \left(\theta - \theta^{ML}\right)^{\top} I_n(\theta^{ML}) \left(\theta - \theta^{ML}\right)\right) d\theta$$
 (6)

$$= \operatorname{const} p(\mathbf{X} \mid \theta^{ML}) \int \exp\left(-\frac{1}{2} \left(\theta - \theta^{ML}\right)^{\top} I_n(\theta^{ML}) \left(\theta - \theta^{ML}\right)\right) d\theta \tag{7}$$

$$= \operatorname{const} p(\mathbf{X} \mid \theta^{ML}) \left| 2\pi I_n^{-1}(\theta^{ML}) \right|^{1/2} \tag{8}$$

$$= \operatorname{const} p(\mathbf{X} \mid \theta^{ML}) \left| \frac{2\pi}{n} I^{-1}(\theta^{ML}) \right|^{1/2}$$
(9)

$$= \operatorname{const} p(\mathbf{X} \mid \theta^{ML}) n^{-k/2}. \tag{10}$$

(11)

Grading: 6 points to fully correct answer, for partial answers:

- For those who followed the above steps:
  - 2 points for Taylor approximation (0.5 for the first two terms and 1.5 for the last)

- 1 points for gradient vanishing
- -1 points for the first  $p(\mathbf{X})$  approximation  $p(\mathbf{X}) \approx \int \exp ...$
- 1 points each for the last two steps of above solution.
- The students didnot necessarily follow the above steps. For those cases, I stayed loyal
  to above grading and distributed the points according to "midstep grading" above.

#### • Some additional notes:

- If there is an error that is not very important and didnot propagate, I cut little points, else I cut more. For instance, for a step that is 1 point worth, if there is a small error (seemed as simple as a typo or careless mistake) I cut 0.25, if it is propagated to another step or used in wrong context then I cut 0.5 etc. If it is fully propagated or if there is no explanation, I sometimes didnot give any points (for instance sometimes some steps were skipped and where n and k come from was unclear. As their existence in the final expression are given by the question itself, if there is no explanation sometimes they lost half to full points).
- Anybody who only wrote sum or integral marginalisation, I gave 0.25 points

#### **Derivation of the BIC**

Use the approximation above to show that

$$p(\mathbf{X}) \approx \operatorname{const} \exp\left(-\mathsf{BIC}\right).$$
 (12)

| 1 pts |
|-------|
| <br>  |
| <br>  |
|       |
|       |
| <br>  |
| <br>  |

$$p(\mathbf{X}) \approx \text{const } p(\mathbf{X} \mid \theta^{ML}) n^{-k/2}$$
 (13)

$$= \operatorname{const} \exp \left( \log p(\mathbf{X} \mid \theta^{ML}) + \log n^{-k/2} \right) \tag{14}$$

$$= \operatorname{const} \exp \left( \log p(\mathbf{X} \mid \theta^{ML}) - \frac{k}{2} \log n \right) \tag{15}$$

$$= const \exp(-BIC) \tag{16}$$

(17)

Grading: Anybody who put a single (and correct) step in between const  $p(\mathbf{X} \mid \theta^{ML})n^{-k/2}$  and  $\exp{(-\mathsf{BIC})}$  or give a verbal explanation (implies, by defn. etc.) got the full 1 points. If only

const  $p(\mathbf{X} \mid \theta^{ML}) n^{-k/2} = \exp{(-\mathsf{BIC})}$  is written without replacing "BIC" with its expression got 0.5 points. If there is no additional step then just writing out what questions asks without putting BIC in, then they get 0 points. Finally, if a middle step is there but written wrongly (some confusions with log, exp etc.) they get 0.5 points.

## Question 6: Convex optimization (8 pts)

Let  $f, g_i, h_j$ , for  $i \leq k$  and  $j \leq \ell$ , be functions mapping  $\mathbb{R}^p$  to  $\mathbb{R}$ . Demonstrate the weak duality property of the primal and the dual:

$$\max_{\lambda \in \mathbb{R}^k, \alpha \in \mathbb{R}^\ell} \min_{w \in \mathbb{R}^p} \mathcal{L}(w, \lambda, \alpha) \leq \min_{w \in \mathbb{R}^p} f(w) 
s.t. \quad \alpha_j \geq 0 \text{ for } j \leq \ell. \qquad s.t. \quad g_i(w) = 0 \text{ for } i \leq k \text{ and } 
h_j(w) \leq 0 \text{ for } j \leq \ell.$$
(18)

Here,  $\mathcal{L}$  is the Lagrangian of the right-hand side of the inequality,  $\lambda_i$  and  $\alpha_j$  are the Lagrange multipliers associated to  $g_i$  and  $h_j$ , respectively. You may assume that all minima and maxima of these optimization problems exist.

For convenience, define  $F = \{ w \in \mathbb{R}^p \mid g_i(w) = 0, h_j(w) \leq 0, \text{ for } i \leq k \text{ and } j \leq \ell. \}.$ 

| 6 pts |  |
|-------|--|
|       |  |
| <br>  |  |
|       |  |
|       |  |
| <br>  |  |
| <br>  |  |
| <br>  |  |

1. The definition of Lagrangian (1pt):

$$\mathcal{L}(w,\lambda,\alpha) = f(w) + \sum_{i=0}^{k} \lambda_i g_i(w) + \sum_{i=0}^{l} \alpha_j h_j(w).$$
 (19)

2. Now we consider arbitrary  $\lambda, \alpha$  where  $\alpha_j \geq 0, j \leq l$  (we can also write  $\lambda \in \mathbb{R}^k, \alpha \in \mathbb{R}^l_+$ ). For  $w \in F$  we thus have (1pt):

$$\lambda_i g_i(w) = 0, \ i \le k, \tag{20}$$

$$\alpha_j h_j(w) \le 0, \ j \le l. \tag{21}$$

3. This means for  $w \in F$ , we can bound  $\mathcal{L}$  by f (1pt):

$$\mathcal{L}(w,\lambda,\alpha) = f(w) + 0 + \sum_{j=0}^{l} \alpha_j h_j(w)$$

$$\leq f(w) + 0 + 0 = f(w). \tag{22}$$

4. Since this holds for  $\forall w \in F$ , we can do the same for the minimum (1pt):

$$\min_{w \in F} \mathcal{L}(w, \lambda, \alpha) \le \min_{w \in F} f(w), \ \forall \lambda \in \mathbb{R}^k, \alpha \in \mathbb{R}^l_+.$$
 (23)

5. Then we extend the domain on the left-hand side to  $w \in \mathbb{R}^p$ , using the fact that extending the domain cannot increase the minimum (1pt):

$$\min_{w \in \mathbb{R}^p} \mathcal{L}(w, \lambda, \alpha) \le \min_{w \in F} \mathcal{L}(w, \lambda, \alpha), \ \forall \lambda \in \mathbb{R}^k, \alpha \in \mathbb{R}^l_+.$$
 (24)

Connecting the previous two inequalities we have

$$\min_{w \in \mathbb{R}^p} \mathcal{L}(w, \lambda, \alpha) \le \min_{w \in F} f(w), \ \forall \lambda \in \mathbb{R}^k, \alpha \in \mathbb{R}^l_+.$$
 (25)

6. Note that the right hand side does not depend on  $\lambda$  and  $\alpha$ , so the inequality holds when taking the maximum with respect to  $\lambda$  and  $\alpha$  (1pt):

$$\max_{\lambda \in \mathbb{R}^k, \alpha \in \mathbb{R}^l_+} \min_{w \in \mathbb{R}^p} \mathcal{L}(w, \lambda, \alpha) \le \min_{w \in F} f(w), \tag{26}$$

which is the weak duality inequality.

Grading notes (Xianyao): I look for each of the steps, and if some steps are incorrectly skipped, the points are not given (a check mark means one point, a half-check mark is half a point). Students often get the different domains of w mixed up, thus skipping steps incorrectly. And for each case where the domain of w is incorrect, I deduct 0.5 points. That is, if they use  $w \in \mathbb{R}^k$  from the beginning, there will be deductions at steps 2, 3, 4, 5 (in this case step 5 is usually omitted) and 6 should they not correct the domain. Often the domain is not clearly stated, and I try my best to salvage some points by finding the domain according to context.

On the other hand, students don't necessarily follow the solution's steps. In that case, I try to follow their proof and find corresponding steps with the solution. If the proof isn't entirely correct, I give points according to the steps I can find.

Finally, typos or other minor mistakes that affect the proof, like writing a  $\leq$  in place of a  $\geq$  inadvertently or missing a  $\sum$  sign in the Lagrange definition, are also worth -0.5 points each. A particular case is, if a student misses both  $\sum$  signs in step 1, the student will get 0 points for the step.

Briefly explain the importance of this inequality for training SVMs in infinitely dimensional spaces.

| 2 pts |
|-------|
| <br>  |
| <br>  |

For SVMs, the primal problem cannot be efficiently solved if we are working with infinite dimensions. However, the dual is always finitely-dimensional as long as the dataset is finite and can be solved using quadratic programming.

Grading note (Xianyao): The main thing I was looking for was a contrast between the primal and the dual, things like "infeasible" vs. "feasible", "intractable" vs. "tractable", "more efficient", "easier to solve", "harder to train". If a contrast is established with proper explanation (finite vs. infinite dimensions) I normally give 2 points, unless there are major factual errors. For example, I actually don't know if the primal is *intractable* or just *inefficient* so I see either acceptable, but if a student says "the dual is an *upper* bound of the primal" (it should be a lower bound), that is worth -0.5 points.

If they only mention something we *can* do with the dual (e.g. we can use the kernel trick or we can transform the problem into finite dimensions) or the primal without contrasting them, I often give 1 point, as *can* indicates a subjective choice, whose benefit for SVM training is unclear. However, if they state that these "allow" or "enable" us to train SVM, I accept it as half a contrast because these words indicate that we would otherwise not be able to do so, and I usually give 1.5 points or even 2, based on the other statements.

In other cases, I try to look for something about dimensionality, feasibility and computation efficiency, but do not give more than 1 point.

## Question 7: Ensemble Methods (8 pts)

Let  $\hat{f}^{\mathrm{ens}}(\cdot) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{(b)}(\cdot)$ , where  $\hat{f}^{(b)}$ , for  $1 \leq b \leq B$ , denotes the base model trained using some randomized algorithm  $\mathcal{A}$  on a sample  $\mathcal{Z} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\} \subseteq \mathbb{R}^d \times \mathbb{R}$ . For any  $(\mathbf{x},\,y)\in\mathbb{R}^d\times\mathbb{R}$  and any two different  $1\leq b,\,\tilde{b}\leq B$ , we assume the following:

- ullet  $\mathbb{E}_{\mathcal{Z},\mathcal{A}}\left[\hat{f}^{(b)}(\mathbf{x})
  ight]=y$ , *i.e.* base models are unbiased,
- $ullet \ \mathbb{V}_{\mathcal{Z},\mathcal{A}}\left[\hat{f}^{(b)}(\mathbf{x})
  ight]=\sigma^2$ , and
- $\operatorname{Cov}_{\mathcal{Z},\mathcal{A}}\left(\hat{f}^{(b)}(\mathbf{x}),\hat{f}^{(\tilde{b})}(\mathbf{x})\right) = \rho.$

For  $1 \leq b \leq B$  and arbitrary  $(\mathbf{x}, y) \in \mathbb{R}^d \times \mathbb{R}$ , show that for  $\mathbb{E}_{\mathcal{Z}, \mathcal{A}} \left| \left( \hat{f}^{\mathrm{ens}} \left( \mathbf{x} \right) - y \right)^2 \right| \leq$  $\mathbb{E}_{\mathcal{Z},\mathcal{A}}\left[\left(\hat{f}^{(b)}\left(\mathbf{x}\right)-y\right)^{2}\right]$  to hold, it must be that  $\rho\leq\sigma^{2}$ . Hint: you may use without proof the bias-variance decomposition of the MSE.

8 pts

#### Master solution:

Please note that subscripts are omitted for simplicity of notation.

Recall that 
$$\mathbb{E}\left[\left(\hat{f}\left(\mathbf{x}\right)-y\right)^{2}\right]=\left(\mathrm{Bias}\left(\hat{f}\right)\right)^{2}+\mathbb{V}\left[\hat{f}\right]$$
. As  $\mathrm{Bias}(\hat{f}(x))=0$ ,  $E_{\mathcal{Z},\mathcal{A}}\left[\left(\hat{f}^{(b)}\left(\mathbf{x}\right)-y\right)^{2}\right]=\mathbb{V}\left[\hat{f}^{(b)}(\mathbf{x})\right]=\sigma^{2}$ .

Since individual base models are unbiased,  $\operatorname{Bias}\left(\hat{f}^{\operatorname{ens}}\right) = \operatorname{Bias}\left(\frac{1}{B}\sum_{b=1}^{B}\hat{f}^{(b)}\right) = \frac{1}{B}\sum_{b=1}^{B}\operatorname{Bias}\left(\hat{f}^{(b)}\right) = \operatorname{Bias}\left(\hat{f}^{(b)}\right) = \operatorname{Bias}\left(\hat{f}^{(b)$  $\operatorname{Bias}\left(\hat{f}^{(b)}\right)=0$ , using linearity of expectation. Therefore,  $\mathbb{E}\left[\left(\hat{f}^{\operatorname{ens}}\left(\mathbf{x}\right)-y\right)^{2}\right]=\mathbb{V}\left[\hat{f}^{\operatorname{ens}}\left(\mathbf{x}\right)\right]$ .

Observe that 
$$\mathbb{V}\left[\hat{f}^{\text{ens}}(\mathbf{x})\right] = \mathbb{V}\left[\frac{1}{B}\sum_{b=1}^{B}\hat{f}^{(b)}(\mathbf{x})\right] = \frac{1}{B^2}\left[B\mathbb{V}\left[\hat{f}^{(b)}(\mathbf{x})\right] + \sum_{j,k=1:j\neq k}^{B}\operatorname{Cov}\left(\hat{f}^{(j)}(\mathbf{x}),\hat{f}^{(k)}(\mathbf{x})\right)\right] = \frac{1}{B^2}\left[B\sigma^2 + B(B-1)\rho\right].$$

We want to show  $\mathbb{E}\left[\left(\hat{f}^{\mathrm{ens}}\left(\mathbf{x}\right)-y\right)^{2}\right]\leq\mathbb{E}\left[\left(\hat{f}^{(b)}\left(\mathbf{x}\right)-y\right)^{2}\right]$  and thus (plugging in the formular)

las of respective variances),

$$\frac{1}{B^2} [B\sigma^2 + B(B-1)\rho] \le \sigma^2.$$

$$\sigma^2 + (B-1)\rho \le B\sigma^2.$$

$$(B-1)\rho \le (B-1)\sigma^2.$$

$$\rho \le \sigma^2.$$

Points distribution::

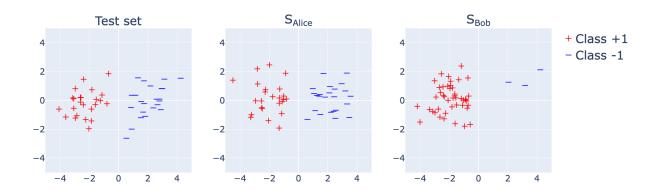
- MSE decomposition (bias<sup>2</sup> + Var) [1pt]
- Explicitly showing that ensemble is unbiased [1pt] ([0.5pt] if the fact stated without showing)

- Using the unbiasedness, i.e. MSE = Var [1pt]
- Rewriting  $Var(\hat{f}^{ens}(x))$  in terms of  $Var(\hat{f}^{b}(x))$  and covariance terms [1pt]
- Rewriting the above expression in terms of  $\sigma^2$  and  $\rho$  [1pt]
- Simplifying the derived expression (make the logical flow to the conclusion) [1pt] ([0.5pt] if conclusion stated without any intermediate steps)
- $\bullet \ \ \mathsf{Final} \ \mathsf{conclusion} \ \left(\mathbb{E}_{\mathcal{Z},\mathcal{A}} \left[ \left( \hat{f}^{\mathrm{ens}} \left( \mathbf{x} \right) y \right)^2 \right] \leq \mathbb{E}_{\mathcal{Z},\mathcal{A}} \left[ \left( \hat{f}^{(b)} \left( \mathbf{x} \right) y \right)^2 \right] \ \mathsf{iff} \ \rho \leq \sigma^2 \right) \ [\mathsf{1pt}]$
- Overall correctness of derivations [1pt]

## Special cases and comments:

- All derivations correct except for the crucial part of rewriting  $Var(\hat{f}^{ens}(x))$  (common mistake:  $Var(\hat{f}^{ens}(x)) = \rho$ ) [4pt in total, as this is the core of the exercise and simplifies substantially all the following steps]
- All derivations correct but  $\rho \leq \sigma^2$  used as assumption, instead of showing it, which was asked in the exercise [6 pt in total]
- $\bullet \ \mathbb{E}_{\mathcal{Z},\mathcal{A}}\left[\left(\hat{f}^{(b)}\left(\mathbf{x}\right)-y\right)^{2}\right]=Var_{\mathcal{Z},\mathcal{A}}(\hat{f}^{b}(x)) \text{ without any explanation [-0.5pt]}$
- Additionally provided incorrect information [-0.5pt]
- No explanation of why we look at  $\frac{1}{B^2}[B\sigma^2+B(B-1)\rho] \leq \sigma^2$  [-0.5pt]
- No punishment for omitting subscripts
- Both iff and one-way logical flow accepted, as the exercise formulation did not seem clear enough
- All derivations correct but no explanation and justification provided for the steps [-1pt or -3pt, depending on the extend]

## Question 8: SVM (8 pts)



Consider the data sets in the figure above. Alice and Bob want to train an SVM using the data sets  $S_{Alice}$  and  $S_{Bob}$ , respectively, with  $|S_{Alice}| = |S_{Bob}| = 50$ . The test set and  $S_{Alice}$  are drawn from a distribution  $\mathcal{D}_{Alice}$  with  $P(Y=+1)=P(Y=-1)=\frac{1}{2}$ , while  $S_{Bob}$  is drawn from distribution  $\mathcal{D}_{Bob}$  with  $\frac{P(Y=+1)}{P(Y=-1)}=15$ . Alice and Bob can choose between the following two types of SVMs:

$$\hat{f}_{1} = \underset{w}{\arg\min} \frac{1}{2} \|w\|_{2}^{2} + C_{1} \sum_{i=1}^{n} \xi_{i}$$
 (Soft-margin SVM) s.t.  $y_{i} w^{T} x_{i} \ge 1 - \xi_{i}$  and  $\xi_{i} \ge 0, \forall i \in \{1, ..., n\}$ 

$$\hat{f}_2 = \underset{w}{\arg\min} \frac{1}{2} \|w\|_2^2 + C_2 \left( C^{(+)} \sum_{\{i: y_i = +1\}} \xi_i + C^{(-)} \sum_{\{i: y_i = -1\}} \xi_i \right)$$
 (Cost-sensitive SVM) s.t.  $y_i w^T x_i \ge 1 - \xi_i$  and  $\xi_i \ge 0, \forall i \in \{1, ..., n\}$ 

Choose the correct answer.

5 pts

- 1. How does increasing  $C_1$  affect the number of support vectors of  $\hat{f}_1(S_{Alice})$ ?
  - $\Box$  the number of support vectors increases
  - ☐ the number of support vectors decreases
  - $\square$  the number of support vectors is independent of  $C_1$

The number of support vectors decreases, as we recover hard margin SVM as  $C_1$  grows to  $\infty$ .

- 2. Suppose that  $C^{(+)}, C^{(-)} > 0$ . How does increasing  $C_2$  affect the number of support vectors of  $\hat{f}_2(S_{Bob})$ ?
  - $\Box$  the number of support vectors increases
  - $\Box$  the number of support vectors decreases
  - $\Box$  the number of support vectors is independent of  $C_2$

The number of support vectors decreases, as we recover hard margin SVM as  $C_2$  grows to  $\infty$ .

| 3.  | Let $S^A \sim \mathcal{D}_{Alice}$ and $S^B \sim \mathcal{D}_{Bob}$ with $ S^A  =  S^B  = 50$ . Which is true as $C_1 \to \infty$ ?                                                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\Box$ $\hat{f}_1(S^A)$ and $\hat{f}_1(S^B)$ have the same bias, but $\hat{f}_1(S^A)$ has a higher variance. $\Box$ $\hat{f}_1(S^A)$ and $\hat{f}_1(S^B)$ have the same bias, but $\hat{f}_1(S^B)$ has a higher variance. |
|     | $\Box$ $\hat{f}_1(S^B)$ has both higher bias and higher variance, compared to $\hat{f}_1(S^A)$ .                                                                                                                          |
|     | $\Box$ $\hat{f}_1(S^A)$ and $\hat{f}_1(S^B)$ have the same variance, but $\hat{f}_1(S^A)$ has a higher bias.                                                                                                              |
|     |                                                                                                                                                                                                                           |
|     | $\Box$ $f_1(S^A)$ and $f_1(S^B)$ have the same variance, but $f_1(S^B)$ has a higher bias.                                                                                                                                |
|     | For $C_1 \to \infty$ , we recover the hard margin SVM. The max margin estimator trained                                                                                                                                   |
|     | on $S^B$ has higher variance, since it depends on fewer negative samples. The bias is                                                                                                                                     |
|     | also higher since the average estimator will be closer to the mean of the negative class                                                                                                                                  |
|     | conditional.                                                                                                                                                                                                              |
| 4.  | Assume that parameter values are set to $C_1=C_2=1$ . Identify the incorrect statement                                                                                                                                    |
|     | among the following:                                                                                                                                                                                                      |
|     | $\square$ The test error of $\hat{f}_1(S_{Alice})$ is smaller than the test error of $\hat{f}_1(S_{Bob})$                                                                                                                 |
|     | $\square$ There exists a choice of $C^{(+)}$ and $C^{(-)}$ for which the test error of $\hat{f}_2(S_{Bob})$ is the                                                                                                        |
|     | same as that of $\hat{f}_1(S_{Alice})$                                                                                                                                                                                    |
|     | $\square$ Consider the $\hat{f}_2(S_{Alice})$ estimator obtained for the fixed values $C^{(+)}=100$ and                                                                                                                   |
|     | $C^{(-)}=1$ . The test error of $\hat{f}_2(S_{Alice})$ is smaller than the test error of $\hat{f}_1(S_{Alice})$ .                                                                                                         |
|     | The last sentence is the false one.                                                                                                                                                                                       |
| 5   | How does increasing $C_2$ (think $C_2>>C^{(+)}$ and $C_2>>C^{(-)}$ ) affect the test error of                                                                                                                             |
| ٥.  | $\hat{f}_2(S_{Bob})$ ?                                                                                                                                                                                                    |
|     | ☐ the test error increases                                                                                                                                                                                                |
|     | ☐ the test error decreases                                                                                                                                                                                                |
|     |                                                                                                                                                                                                                           |
|     | $\Box$ the test error is independent of $C_2$                                                                                                                                                                             |
|     | The test error increases with C, as the balancing effect of $C^{(+)}$ and $C^{(-)}$ becomes                                                                                                                               |
|     | dominated by the magnitude of $C_2$ .                                                                                                                                                                                     |
| Vri | te the Lagrangian of the optimization problem for $f_2(\mathcal{D}_{Bob}).$                                                                                                                                               |
|     | 3 pts                                                                                                                                                                                                                     |
|     | - P                                                                                                                                                                                                                       |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
| •   |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
| • • |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                           |

$$\mathcal{L}(w, \alpha, \beta) = \frac{1}{2} \|w\|_{2}^{2} + C_{2} \left( C^{(+)} \sum_{\{i: y_{i} = +1\}} \xi_{i} + C^{(-)} \sum_{\{i: y_{i} = -1\}} \xi_{i} \right) + \sum_{i} \alpha_{i} (1 - \xi_{i} - y_{i} w^{T} x_{i}) - \sum_{i} \beta_{i} \xi_{i}$$

Grading scheme: Multiple choice:

 $-\ +1$  for correct answer, 0 no answer

## Lagrangian:

- -1 point for sign errors
- -2 points for missing constraints in the Lagrangian
- -2 points for wrong main objective

## Question 9: Non-parametric Bayesian inference (8 pts)

Let  $X=(X_1,\ldots,X_n)$  be a sample drawn from a non-parametric mixture of Gaussians. Let  $Z=(Z_1,\ldots,Z_n)$  be random variables taking values in  $\mathbb{N}$ , according to a CRP. For  $i\leq n$  and  $k\in\mathbb{N}$ ,  $\mathbf{P}(Z_i=k)$  denotes the probability that  $X_i$  should be assigned to cluster k. For  $i\leq n$ , denote by  $Z_{-i}$  the vector  $(Z_1,\ldots,Z_{i-1},Z_{i+1},\ldots,Z_n)$ . Define  $X_{-i}$  analogously.

In the lecture, we constructed a collapsed Gibbs sampler to estimate the posterior distribution. For this, we needed to compute  $\mathbf{P}(Z_i=k\mid Z_{-i}=z,X=x,\theta)$ , for some adequate z and  $x=(x_1,\ldots,x_n)$ . Here,  $\theta$  are the priors' parameters, which we omit for convenience in the following.

Demonstrate that

$$\mathbf{P}(Z_{i} = k \mid Z_{-i} = z, X = x) \propto \mathbf{P}(Z_{n} = k \mid Z_{-n} = z) \times$$

$$\mathbf{P}(X_{i} = x_{i} \mid X_{-i} = x_{-i}, Z_{i} = k, Z_{-i} = z).$$
(27)
$$(28)$$

| 8 pts |  |
|-------|--|
| <br>  |  |
|       |  |

The solution to the problem given in https://ml2.inf.ethz.ch/courses/aml/slides/aml21-lecture-13-npb.pdf – slide 46/53 and 47/53

## Question 10: PAC learning (12 pts)

Consider a binary classification problem where the covariates are drawn from an arbitrary distribution  $x \sim \mathcal{D}$  and the output variable is given by  $y = c^*(x), \forall x \in \mathcal{X}$  where  $c^* \in \mathcal{C}$ . Given a finite data set  $S = \{(x_i, y_i)\}_{i=1}^n$ , we want to estimate  $c^* \in \mathcal{C}$  with low error, using a hypothesis from  $\mathcal{H}$ .

| Are the following claims true or false?  4 pts                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. The minimum number of samples required to PAC-learn concept class $\mathcal C$ using functions from hypothesis class $\mathcal H$ is determined by the VC dimension of set $\mathcal C$ . $\square$ True $\square$ False False.                                                                                                                                                                                                                 |
| 2. Assume that $\mathcal{C} \neq \mathcal{H}$ . It is necessary that $\mathcal{C} \subseteq \mathcal{H}$ , in order for $\mathcal{C}$ to be PAC learnable from $\mathcal{H}$ . $\square$ True $\square$ False False.                                                                                                                                                                                                                               |
| <ol> <li>The VC dimension of a parametric family of functions is always proportional to the number of parameters.</li> <li>□ True</li> <li>□ False</li> <li>False. e.g. a parameterized sine function</li> </ol>                                                                                                                                                                                                                                   |
| 4. There exists an infinite concept class $\mathcal{C}$ (i.e. $ \mathcal{C} =\infty$ ) that is PAC learnable from itself.<br>$\square$ True $\square$ False<br>True. e.g. finite VC dimension classes                                                                                                                                                                                                                                              |
| Consider the learning problem introduced above. The notation $R(h) = \mathbb{E}_{x \sim \mathcal{D}} \mathbb{1}$ $(c^*(x) \neq h(x))$ denotes the population risk and $\hat{R}(h;S) = \frac{1}{ S } \sum_{(x_i,y_i) \in S} \mathbb{1}$ $(y_i \neq h(x_i))$ the empirical risk, where $\mathbb{1}$ is the indicator function. Assume that $\mathcal{C} = \mathcal{H}$ and that the set $\mathcal{H}$ is finite. Write the optimization problem that |
| corresponds to empirical risk minimization over $C$ . What is the minimum empirical risk that can be achieved for an arbitrary data set $S = \{(x_i, y_i)\}_{i=1}^n$ ?                                                                                                                                                                                                                                                                             |
| 2 pts                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Solution: $\min_{h \in \mathcal{C}} \hat{R}(h; S) = \min_{h \in \mathcal{C}} \frac{1}{ S } \sum_{(x_i, y_i) \in S} \mathbb{1}(y_i \neq h(x_i))$ . Minimum empirical risk                                                                                                                                                                                                                                                                           |

is 0, achieved by  $c^* \in \mathcal{C} = \mathcal{H}.$  Grading:

- $-\ +1$  for the correct optimization problem for ERM.
- $-\ +1$  for the correct mininum empirical risk.
- $-\ -0.5$  for any redundant/incorrect statements, constraints, etc.

| For $\epsilon > 0$ , let $C_{\epsilon} = \{h \in C : R(h) > \epsilon\}$ and assume that $\min_{h \in C} \hat{R}(h; S) = 0$ . Show that:                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbb{P}\left(\exists h \in \mathcal{C}_{\epsilon} \text{ s.t. } \hat{R}(h;S) = 0\right) \leq  \mathcal{C}_{\epsilon} (1-\epsilon)^n$                                                                                                                                                                                                                                |
| Hint: Use the union bound, i.e. for a set of events $\{E_1,,E_m\}$ , $\mathbb{P}(E_1 \vee \vee E_m) \leq \sum_{i=1}^m \mathbb{P}(E_i)$ .                                                                                                                                                                                                                                |
| $\sum_{i=1}^{n} \binom{L_i}{i}$ .                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                         |
| Solution: We know from the previous question the $r_{min}=0$ . $\mathbb{P}\left(\exists h\in\mathcal{C}_{\epsilon} \text{ s.t. } \hat{R}(h;S)=r_{min}\right)=\mathbb{P}\left(\bigvee_{h\in\mathcal{C}_{\epsilon}}\hat{R}(h;S)=0\right)\leq\sum_{h\in\mathcal{C}_{\epsilon}}\mathbb{P}\left(\hat{R}(h;S)=0\right)\leq \mathcal{C}_{\epsilon} (1-\epsilon)^{n}.$ Grading: |

- $-\ +1$  for transforming the given probability to the probability of the union.
- $-\ +1$  for applying the union bound.
- +1 for bounding the probability of the union by  $|\mathcal{C}_{\epsilon}|(1-\epsilon)^n$ .
- $-\ -0.5$  for any redundant/incorrect statements, constraints, etc.

$$\mathbb{P}\left(\exists h \in \mathcal{C} \text{ s.t. } \hat{R}(h; S) = 0 \text{ and } R(h) \le \epsilon\right) \ge 1 - \delta. \tag{29}$$

Hint: You may also use the inequality  $(1-x)^z \le e^{-xz}$  for small x.

| 3 pts |  |
|-------|--|
|       |  |
|       |  |
| <br>  |  |
| <br>  |  |
|       |  |

Solution:  $\mathbb{P}\left(\exists h \in \mathcal{C}_{\epsilon} \text{ s.t. } \hat{R}(h;S) = r_{min}\right) \leq |\mathcal{C}_{\epsilon}|(1-\epsilon)^n \leq |\mathcal{C}_{\epsilon}|e^{-\epsilon n}$ . So  $R(h) \leq \epsilon \text{ w.p. } 1-\delta \iff |\mathcal{C}_{\epsilon}|e^{-\epsilon n} \leq \delta$ . Hence, we can write  $n \geq \frac{1}{\epsilon}(\log |\mathcal{C}_{\epsilon}| + \log \frac{1}{\delta})$ . This implies the polynomial bound:  $n \geq \frac{1}{\epsilon}(\log |\mathcal{C}_{\epsilon}| + \frac{1}{\delta})$  Grading:

- -+1 for bounding  $|\mathcal{C}_{\epsilon}|(1-\epsilon)^n$  by  $|\mathcal{C}_{\epsilon}|e^{-\epsilon n}$ .
- -+1 for showing  $R(h) \le \epsilon$  w.p.  $1-\delta \iff |\mathcal{C}_{\epsilon}|e^{-\epsilon n} \le \delta$ .
- -+1 for showing the lower bound on n.
- -0.5 for any redundant/incorrect statements, constraints, etc.
- $\pm 3$  for the trivial solution, *i.e.*, the lower bound for n is any constant number. It is given that  $\mathcal{C}=\mathcal{H}$ , so the inequality (29) is always satisfied by setting  $h=c^*$ . NOTE: it needs to be a proof, so no points is given for answers that do not explain why (*e.g.*, just stating n=0).

## Question 11: Model selection (12 pts)

Each subquestion is independent of the others. You don't need to have solved the previous ones to solve the next one.

**Prelude:** The Kullback-Leibler divergence is a distortion measure between two distributions p and q over a finite sample space  $\Theta$  defined as follows:

$$KL(p \parallel q) = \sum_{\theta \in \Theta} p(\theta) \log \left( \frac{p(\theta)}{q(\theta)} \right).$$
 (30)

Demonstrate that

$$KL(p \parallel q) = -H[p] - \sum_{\theta \in \Theta} p(\theta) \log q(\theta), \tag{31}$$

where  $H[p] = -\sum_{\theta \in \Theta} p(\theta) \log p(\theta)$  is the entropy of p:

| 3 pts |  |
|-------|--|
| <br>  |  |
|       |  |

Master solution:

$$\begin{split} KL(p \mid q) &= \sum_{x \in \mathcal{X}} p(x) \log \left( \frac{p(x)}{q(x)} \right) = \sum_{x \in \mathcal{X}} p(x) \log p(x) + \sum_{x \in \mathcal{X}} p(x) \log \left( \frac{1}{q(x)} \right) \\ &= -(-\sum_{x \in \mathcal{X}} p(x) \log p(x)) - \sum_{x \in \mathcal{X}} p(x) \log q(x) = -H[p] - \sum_{x \in \mathcal{X}} p(x) \log q(x) \end{split}$$

Note: Backward solution also accepted: going from equation 9 to 8.

## Points distribution::

- Each step in master solution [1pt]
- Small error in placement of brackets in any of the equation [-0.5]

**Setting:** Let  $\mathcal{X}$  be a space of possible datasets,  $\Theta$  a **finite** space of hypotheses, and  $R:\Theta\times\mathcal{X}\to\mathbb{R}$  a cost function. For  $\theta\in\Theta$  and  $X\in\mathcal{X}$ ,  $R(\theta,X)$  measures how well the model  $\theta$  fits the data X.

One of the main goals in machine learning is to compute from a given training set X' a posterior distribution  $p(\cdot \mid X')$  over  $\Theta$ . You may assume X' to be drawn from a distribution  $p^*$  over  $\mathcal{X}$ . For  $\theta \in \Theta$ ,  $p(\theta \mid X')$  measures our confidence that  $\theta$  is the right hypothesis for X'.

In Lecture 2, we discussed two objectives that such a distribution should fulfil. In general, the two objectives cannot be fulfilled simultaneously, so a trade off is required.

**Objective 1:** The posteriors should use the hypothesis class  $\Theta$  uniformly when we average over all experiments. We quantified this in the lecture by requiring  $p(\cdot \mid X')$  to be as "close" as possible to the uniform distribution over  $\Theta$ , in expectation with respect to X'. Formalize this objective, as done in the lecture, and then show that it is equivalent to requiring  $p(\cdot \mid X')$ , for  $X' \in \mathcal{X}$ , to maximize

$$\mathbb{E}_{X'}[H[p(\cdot \mid X')]],\tag{32}$$

5

where H is the entropy.

| pts     |      |      |      |      |      |      |      |      |      |      |      |      |      |         |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|
|         | <br>    |
|         | <br>    |
|         | <br> | <br>•   |
|         | <br>    |
|         | <br> | <br>•   |
|         | <br> |         |
|         | <br> | <br>•   |
|         | <br>    |
| • • • • | <br> | <br>. • |
|         | <br> | <br>•   |

#### Master solution:

#### Formalise:

using minimisation of KL divergence between  $p(\cdot \mid X')$  and uniform distribution over  $\Theta$ 

$$\underset{\{p(\cdot|X')_{X'\in\mathcal{X}}\}}{\arg\min} E_{X'}[KL(p(\cdot\mid X')\mid\mid Unif_{\theta}(\cdot))]$$
 
$$\underset{p}{\arg\min} E_{X'}(-H(p(\cdot\mid X')) - \sum_{\theta} p(\theta\mid X')\log\mid\theta\mid^{-1})$$
 The right term is constant as  $\log\mid\theta\mid^{-1}$  is constant and 
$$\sum_{\theta} p(\theta\mid X') = 1$$
 
$$\underset{p}{\arg\min} -E_{X'}(H(p(\cdot\mid X')))$$
 
$$\underset{p}{\arg\max} E_{X'}(H(p(\cdot\mid X')))$$

#### Points distribution::

- Formalise by minimising KL divergence and writing KL divergence term correctly [2 pt]
- Applying formula for KL divergence for the given distributions [1.5 pt]
- Proof of constant term of right part [1 pt]
- maximizing to maximizing using minus term [0.5 pt]
- If maximizing instead of minimizing KL divergence mentioned in formalisation [-1.5 pt]

**Objective 2:** The distribution must minimize the description length on test data. We formalized this by requiring  $p(\cdot \mid X)$  to minimize

$$\mathbb{E}_{X',X''}\left[\mathbb{E}_{\theta\mid X'}\left[-\log p(\theta\mid X'')\right]\right]. \tag{33}$$

Here, X'' is another dataset drawn from  $p^*$ . Show that we can bound this expression from below with

$$\mathbb{E}_{X',X''}\left[-\log\kappa(X',X'')\right],\tag{34}$$

2

where

$$\kappa(X', X'') = \sum_{\theta} p(\theta \mid X') p(\theta \mid X''). \tag{35}$$

pts \_\_\_\_

Master solution: Jensen's inequality: let f(x) be a convex function, then:  $E_X f(X) > f[E_X]$ Lower bound on the given objective ( $-\log(X)$  is convex):  $\mathbb{E}_{X',X''} \sum_{\theta} p(\theta \mid X') [-\log p(\theta \mid X'')] \ge \mathbb{E}_{X',X''} [-\log \sum_{\theta} p(\theta \mid X') p(\theta \mid X'')]$  $\mathbb{E}_{X',X''} \sum_{\theta} p(\theta \mid X') [-\log p(\theta \mid X'')] \ge \mathbb{E}_{X',X''} [-\log \kappa(X',X'')]$ Points distribution:: • Mention of Jensen Shanon inequality or -log convex [1pt] • Expectation of  $\mathbb{E}_{\theta|X'}$  to summation and using Jensen Shanon inequality (basically last two inequalities in master solution) [1pt] • If inequality sign reversed [-1pt] The new score: The lecture then demonstrated how to combine the two previous results into the following score:  $\mathbb{E}_{X',X''}[\log(|\Theta|\kappa(X',X''))]$ (36)Briefly explain what this score measures. Should it be maximized or minimized, why? You do not need to derive Formula 36 for this. 2 pts

Master solution:

It quantifies how robust the algorithm is to fluctuations between two datasets X' and X'' drawn at random. Indeed,  $\kappa(X',X'')$  is high only when  $p(\cdot\mid X')$  and  $p(\cdot\mid X'')$  look alike. Therefore, good learning algorithms shall maximize this score.

Keywords: measures generalization ability or robustness.

Note: referring to objective 1 and 2 for explaining what the score measures are also acceptable.

# Points distribution::

- Maximize [1pt]
- Reason for maximization or what the score measures [1pt]