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General Remarks

e Please check that you have all 44 pages of this exam.
e You can acquire a maximum of 100 points.
e The exam lasts 180 minutes.

e Advice: Do not spend too much time on a single question. You do not need to secure
100 points to achieve the top grade.

e Remove all material which is not permitted by the examination regulations from your desk.

e Write your answers directly on the exam sheets. If you need more space, make sure you
put your student ID number on top of each supplementary sheet.

e Immediately inform an assistant in case that you are not able to take the exam under
regular conditions. Delayed complaints are not accepted.

e Attempts to cheat/defraud lead to immediate notification to the rector's office with a
possible exclusion from the examination and it might entail judicial consequences.

e Use a black or a blue pen to answer the questions. Pencils or red/green colored pens are
not allowed.

e Provide only one solution to each exercise. Invalid solutions have to be clearly and unam-
biguously cancelled.

e Grading of true/false questions: You will receive 1 point per correct answer, -1 point
per incorrect answer, and O points for no answer with a minimum of 0 points per question.

e Grading of multiple choice questions: You receive 1 point per correct answer and 0
points per incorrect answer or unanswered question.



Topic Points | Points achieved | Checked
1 Density estimation 12
2 Regression 9
3 Bias-variance tradeoff 7
4 Linear methods 8
5 Bayesian information criterion 8
6 Convex optimization 8
7 SVMs 8
8 Ensembles 8
9 NP-Bayes 8
10 | PAC-learning 12
11 | Model selection 12
Total 100




Question 1: Density Estimation: Frequentist Linear Regression (12 pts)

Let Y € R be a random output variable and x € R? be a fixed vector of features. Assume the

following regression model:
Y =8"x+e¢, (1)

where 3 € R? is a fixed vector of regression parameters and € ~ A (0, o?).

e Derive the distribution of Y | x, 3. Write down its mean and variance.

Y{x, B~N (ﬁTX, (72). Since Y = B"x+eand e ~ N(0, 02), Y is normally-distributed;
EY]=E[B'x+¢|=8"x+E[]=8"xand VY] =V [B'x+¢] =0+ V][] =02

e Assume given a dataset Z = {(x;,y;)},_,, with y; ~ P (Y| x;, B). Write down the log-
likelihood function log P (Z|3). You may write it up to the terms constant in 3. You

may assume that {x;}_, are fixed.

3 pts
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e Let X € R™*4 be the design matrix with rows given by x; from Z and lety = (v, ..., yn)T
Demonstrate that the MLE for 3 is 37,, = (XTX)_1 X Ty. You may assume XX to

be invertible.

3 pts

B'\’” = argmaxg P (Z | B) = argmaxg {— > (yi — BTX;)Q} = argming y ., (;{/i — ﬁTX,-)z.

, _, .
argming Y . | (yi — 5TX;>_ = arg ming || X3 — ij =: argming Lg.
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e What is the distribution of 3},,? Derive the distribution’s parameters and show that 37,,

is an unbiased estimator of 3.

4 pts

Recall that Y|x, 8 ~ N (B8'x, 0?). Then 37, should follow a multivariate Gaus-



sian distribution with the mean E [Bj{u} —E {(XTx)*1 XTy} — (XTX) ' XTE[y] =
(X™X) 'XEXB+¢ = (X'X) "X (XB+E[]) = (X'X)'X"XB8 = 8 and
covariance V {Bf{u} =V {(XTXY1 XTy} =V [(XTXY1 X' (XB+ e)} =

0+V [ (X7X) ' XTe| = (XTX) XX (XTX)

Viel = (XTX) Lo = (X"X) ' 02,
where € ~ N (0, I;0?) is a vector with i.i.d. noise terms. Thus, BT{',L ~ Ny (ﬁ (XTXY1 (72).

,Bff\"”/ is an unbiased estimator 3, since E {A;’{,L} = 0.
Grading scheme a

e -2 (-1) if (minor) conceptual mistake / incorrect derivation

e -0.5 if mixed scalar and matrix notation (i.e. gave I,0)

e -1 for not logging

e -2 if given general p(y|z) form, unless expanded later
e -1 if given N(y;|x;), unless expanded later

e -0.5 for minor errors in derivation (signs, no )

e -1 if mix scalar and matrix notation

e -2 if they invert with o7

e -1 for minor derivation mistakes (eg signs, transpose mistakes)

e +2 for E[f] and +1 for just unbiased definition

e +2 for Var[]. -1 if Var[f] is derived incorrectly. -2 if larger mistakes in derivation (eg
not understanding matrix properties)



Question 2: Regression (9 pts)

We continue with the same notation as in Question 1.

e Are the following claims true or false?

e Choose the correct answer.

4 pts

. Consider the regression model Y = f(x, B) + ¢ = By + B121 + Bow + Bslog s + €
with i.i.d. error terms € ~ N (0, 6%). We can obtain an unbiased estimator of
the coefficients 3 by fitting the linear least-squares regression on the appropriately
transformed 1, 2o, x3.

U True U False
True,
. For any two random variables X and Y argmin, E[(Y — g(X))?] = E[Y" | X].
U True U False
True.

. Assume that Y = x"3 + e. The least-squares estimator 8 = (X" X) !XTy has the
smallest variance among all estimators of 3 of the form Cy, for some C € R%*"

L1 True L] False
False. Consider the ridge estimator.
. For the least-squares estimator ﬁ above to exist, no column of the design matrix X
must be a linear combination of other columns.

(] True L] False
True.

5 pts

1. Consider LASSO and ridge regression with two features. Which of the plots below

shows the estimated regression coefficients B across varying regularization parameter
A for the LASSO regression (one plot correponds to LASSO and another to ridge)?
Note: each curve corresponds to the values of a single estimated coefficient across a
range of regularization parameter values.

0 e 0 >

Coefficient
<3 -1 < -1 — 4

- ﬁz

) 2

1 10 100 1000 0.03 0.10 0.30 1.00 3.00
log1o(A) log1o(A)
(a) O (b) O



(b)

. Consider the closed form solution for ridge regression (3'ds¢ = (XTX + /\I[d)_l XTy.
The estimator 3" follows

(] a normal distribution with the mean 3

[J a normal distribution with the mean (XTX + )xI[d)_l XTX3

O an unknown distribution with the mean (XX + /\]Id)f1 X™X3

A normal distribution with the mean (XTX + )xH,;)fI X'X23.

. LASSO regression is equivalent to the MAP estimator in Bayesian linear regression
with the prior on (; given by

(] a Laplace distribution with the location parameter 0 and scale parameter %

[J a normal distribution with the mean 0 and variance "—/\2

[J a Cauchy distrubition with the mean 0 and variance %

2;3_

. Consider 3 = argming {| X8 — y|l3 + Ao |B]2 + A1 [|B]],}, where A, Ao > 0 are
regularization parameters. Which of the plots below depicts the level sets of the
penalty term Xy |82 + A1 || B]|, for 2 features, Ay = 0.1, and A\, = 0.9?

S5/ 7o
;,)?’b-?/

A Laplace distribution with the location parameter 0 and scale parameter

(c)

. An astrologist wants to predict the life expectancy of her clients. She considers com-
puting the least-squares estimator ,3 = (XTX)" X Ty for linear regression with an
intercept term and four binary features coding whether a client was born in the corre-
sponding season (spring, summer, autumn, and winter). Her dataset contains at least
5 clients. Which statement is true?

[J The least-squares estimator exists, however, the ridge regression estimator would
have a lower test MSE in this setting.

[] The least-squares estimator exists, however, least-squares linear regression is not
appropriate for datasets with categorically-valued features.

(] The least-squares estimator does not exist, since the features are collinear.

The least-squares estimator does not exist, since the features are collinear.

10



Question 3: Bias-variance tradeoff (7 pts)

Consider a classification problem where we want to predict labels y € ) from features x € X
using a finite data set D,, = {(x;,y;)"_,}. We use the term estimator to refer to any function

f:xX=).

o Let fERM be the empirical risk minimizer over a certain hypothesis class. List three meth-
ods to reduce the variance of frgr;.

1 pts

Collecting more data, increasing/adding regularization, increasing model size well beyond
interpolation (double descent), reducing model complexity, performing feature selection.
Grading: 40.5 first answer, +0.25 second answer, +0.25 third answer. No negative points.

e Are the following claims true or false?

6 pts

1. Reducing the bias of any estimator f : X — ) increases its variance.
L] True L] False
False.
2. Consider an SVM estimator that uses an RBF kernel k(z,2) = exp(—|z — z[]?).
Decreasing the value of the coefficient v leads to a lower variance.
L] True L] False
True.

3. If an estimator interpolates the training data (i.e. achieves 0 training error) then it has
poor generalization (i.e. high test error).
L] True Ll False

False.
4. Boosting and bagging reduce both the bias and the variance of the individual estima-
tors.
L] True Ll False
False.
5. Consider a finite-sample data set with noiseless samples. In this case, interpolating
the data is sufficient for good generalization.
L] True Ll False
False.

6. Increasing the sample size n reduces the variance of any estimator f : X — ).
L] True U False

11



False, e.g. the empirical count estimator for number of heads of a coin toss.

12



Question 4: Linear Methods (8 pts)

Assume given a dataset Z = {(x1,¥1), ..., (Xn, yn) } Where x; € R? are features and y; € {0,1}
are labels, for 1 <i<n. LetCo={i: 1, =0,1<i<n}andC;={i: y;=1,1<i<n}.

e Which of the following classification methods are (a) generative, (b) probabilistic discrim-

[

inative, (c) discriminative? Put the correct letter (‘a’, ‘b’ or ‘c’ ) next to each method.

2 pts

1. Perceptron _
Logistic regression -
3. A maximum likelihood approach modeling class-conditional
densities and class priors -
4. Fisher’s linear discriminant with a threshold for classifying
projected data points -

ro

1-¢,2-b,3-2a,4-c.

e Assume given class-conditional densities for features x denoted by p (x |y = k) and class
prior probabilities p (y = k), for k € {0,1}. Derive an expression for the posterior proba-
bility p (y = 0]x) in terms of class-conditional densities and class prior probabilities.

1 pts

) o _ p(x|y=0)p(y=0) p(x | y=0)p(y=0)
By Bayes’ theorem, p (y = 0|x) = p(x) — p(x|y=0)p(y=0)+p(x [y=1)p(y=1)"

For the remainder of this question, we will focus on Fisher's linear discriminant. Recall that

Fisher's linear discriminant is given by a weight vector w € R¢ maximizing the criterion
2

(wim; — w'my)

= 59
Zke{o,l} Zieck (Wix; — wimy)

J(w) (2)

where my, = ﬁ > icc, Xi» for k€ {0,1}. We will consider a classifier constructed by applying
a threshold to the projected data points w ' x;.

13



e Explain the meaning of the numerator and denominator in the criterion J(w) above.

2 pts

Numerator corresponds to the separability of the projected class centroids; denominator
corresponds to the scatter of the projected data points within each class.

. . . . 2
Consider two alternative criteria J®(w) = (w'm; — w'm,)~ and

JA(w) = 1 . The plots below depict three different datasets.

Zke{o,u Zieck (WTXi_Wka)Q
Symbols ‘x' and ‘o’ denote classes 0 and 1, respectively. For w maximizing J™ (w), for
which dataset would the projected data points w ' x; not be linearly separable? For which
dataset would the projected data points w'x; not be linearly separable when maximizing
J@(w)? Write down the letter of the corresponding dataset next to the appropriate
criterion.

1 pts
X2 X2 X2
5 51 X 5 X
4 4 X 4
3 o 31 X 3 X
2 X o 2 o 2 O
o
1 X o 1 [e] 1 X O
-5 -4 -3 -2 -1 1 2 3 4 5 X1 -5 -4 -3 -2 -1 1 2 3 a4 5 X1 -5 -4 -3 -2 -1 1 2 3 4 5 X1

-1 -1 -1
-2 -2 -2
-3 -3 -3
—a -4 -4
=5 =5 -5
(a) (b) ()

J(l)(.)

JA ()

J(U(W) fails for (c); J(Q)(W) fails for (b).

14



e Consider another dataset plotted below. How many solutions are there maximizing Fisher's
criterion J(w)? Justify your answer.

X2 2 pts

-5 23 3 2 1 1 2 3 4 5 xi
0-1

There are infinitely many optimal projection lines. Any w € R? maximizes .J(w). Observe
that J(w) = 0 for any w € R?, since my = m; = 0 and the numerator of J(w) is always
equal-to 0.

Grading scheme

e +0.5 points for each correct answer. No penalty for the wrong one.
e Full 1 point for the correct formula. 0.5 points if demominator is only written as p(x).

e + 1 points for correct answer for each meaning. It should not be exact as in the solution
but the idea of what nomination and denominator mean should be correct.

15



e +0.5 points for each correct answer. No penalty for the wrong one.

e +1 points for correct answer (infinitely many solutions) and +1 point for the correct
explanation. If the answer is wrong then 0 points.

16



Question 5: Bayesian information criterion (BIC) (8 pts)

All subquestions here are independent. You do not need to have solved the previous ones to
solve the next.

Assume that a dataset X is given and that we want to estimate the parameter of a model
{p(-]0) | & € R¥}. In this question, we ask you to reproduce the derivation of the BIC in the

lecture. The BIC is defined by the formula —log p(X | ") + £ log n, where n is the number
of examples in the dataset X and k is the number of entries in #¥%, the maximum likelihood

estimator.

We start from a Bayesian perspective. Write p(X) in terms of the likelihood p(X | 6) and a
prior p(f), here 0 is a variable denoting a parameter.

p(X) = / p(X | 0)p(0)do. (3)

Grading: +1 points for correct solution and +0.25 points if sum is written instead of integral.
0 points otherwise.

Assume that we use a very flat prior. Demonstrate that

p(X) ~ const n~*2p(X | HML). (4)

Hint: You may use the following facts without proof.

e —1,(0) is the Hessian of log p(X | ) with respect to 6, where I,,(6) is the Fisher informa-
tion computed for X and #. You may assume it is invertible.

The normalization constant of A (11, %) is [27 3|2,

| 1(6*5)] is a constant.

e You may assume that second-order Taylor approximations are exact.

It can be shown that the prior p(-) can be replaced with a constant over R*.

17



The Taylor approximation is the following:

o1 , ,,
log p(X | ) ~ log p(X | 6M)+(6 — 6M1) ' Viog p(X | oM )5 (6 - oMY "1, (0M) (6 — M)
(5)

The linear term vanishes as Vlogp(X | M%) = 0. Replacing this into Equation 3 and substi-
tuting p(f) with a constant yields

p(X) ~ const /exp (logp(X | oMLy — ; (0 — ﬁML)T L,(0™") (0 — QML)> do  (6)
— const p(X | HME) / exp (—; (6 —6M5) " 1,65 (6 — eML)) do (7)
= const p(X | HM1) }QWIJI(QML)‘]/Z (8)
o 1/2
= const p(X | OME) | =171 (9ME) 9)
n

— const p(X | MLy k2, (10)

Grading: 6 points to fully correct answer, for partial answers:

e For those who followed the above steps:

— 2 points for Taylor approximation (0.5 for the first two terms and 1.5 for the last)

18



— 1 points for gradient vanishing
— 1 points for the first p(X) approximation p(X) ~ [ exp...
— 1 points each for the last two steps of above solution.
— The students didnot necessarily follow the above steps. For those cases, | stayed loyal
to above grading and distributed the points according to " midstep grading” above.
e Some additional notes:

— If there is an error that is not very important and didnot propagate, | cut little points,
else | cut more. For instance, for a step that is 1 point worth, if there is a small error
(seemed as simple as a typo or careless mistake) | cut 0.25, if it is propagated to another
step or used in wrong context then | cut 0.5 etc. If it is fully propagated or if there
is no explanation, | sometimes didnot give any points (for instance sometimes some
steps were skipped and where n and k come from was unclear. As their existence in the
final expression are given by the question itself, if there is no explanation sometimes
they lost half to full points).

— Anybody who only wrote sum or integral marginalisation, | gave 0.25 points

Derivation of the BIC

Use the approximation above to show that

p(X) =~ constexp (—BIC). (12)

p(X) ~ const p(X | §ME)pk/2 (13)
= const exp (logp(X | 6") + log n’k/z) (14)
k
= const exp (logp(X | oMLY — 5 log n> (15)
= const exp (—BIC) (16)
(17)
Grading: Anybody who put a single (and correct) step in between const p(X | #*)n=*/2 and

exp (—BIC) or give a verbal explanation (implies, by defn. etc) got the full 1 points. If only

19



const p(X | OME)n=k/2 = exp (—BIC) is written without replacing "BIC" with its expression
got 0.5 points. If there is no additional step then just writing out what questions asks without
putting BIC in, then they get 0 points. Finally, if a middle step is there but written wrongly
(some confusions with log, exp etc.) they get 0.5 points.

20



Question 6: Convex optimization (8 pts)

Let f, g, hj, fort <k and j < /¢, be functions mapping R” to R. Demonstrate the weak duality
property of the primal and the dual:

max min L(w,\,a) < min f(w)
AERF acRt weRP wERP
gi(w) =0fori<kand (18)
hj(w) <0 forj </
Here, L is the Lagrangian of the right-hand side of the inequality, \; and «; are the Lagrange

multipliers associated to g; and h;, respectively. You may assume that all minima and maxima
of these optimization problems exist.

For convenience, define F' = {w € R? | g;(w) = 0, h;(w) <0, fori <k and j < /.}.

s.t. a; >0 for j < /L. s.t.

6 pts

21



1. The definition of Lagrangian (1pt):
k I
Lw, X a) = fw)+ > Ngi(w) + Y ahj(w). (19)
i=0 =0

2. Now we consider arbitrary A\, a where o; > 0,5 < I (we can also write A € R*, o € ]Rﬂr)
For w € F we thus have (1pt):

Aigi(w) =0, i <k, (20)
ajh;(w) <0, j<I (21)
3. This means for w € F, we can bound £ by f (1pt):
!
Lw, X a) = f(w)+0+ > ah(w)
=0

< fw)+0+4+0= f(w). (22)

4. Since this holds for Vw € F', we can do the same for the minimum (1pt):
{Unellrmlﬁ(w,)\?a) _Lnellr%f(w), VA e R a eR. (23)

5. Then we extend the domain on the left-hand side to w € RP, using the fact that extending
the domain cannot increase the minimum (1pt):

min £(w, A, &) < min £(w, A, a), YA € RF,a € RL. (24)

weRP welF

Connecting the previous two inequalities we have

g&@ﬁ(w,)\,a) _{Uné?f(w), VAeR" aeR,. (25)
6. Note that the right hand side does not depend on A\ and «, so the inequality holds when
taking the maximum with respect to A and « (1pt):

in £(w, A, @) < mi 26
N (w, A, @) < min f(w), (26)

which is the weak duality inequality.

Grading notes (Xianyao): | look for each of the steps, and if some steps are incorrectly skipped,
the points are not given (a check mark means one point, a half-check mark is half a point).
Students often get the different domains of w mixed up, thus skipping steps incorrectly. And for
each case where the domain of w is incorrect, | deduct 0.5 points. That is, if they use w € R*
from the beginning, there will be deductions at steps 2, 3, 4, 5 (in this case step 5 is usually
omitted) and 6 should they not correct the domain. Often the domain is not clearly stated, and
| try my best to salvage some points by finding the domain according to context.

On the other hand, students don't necessarily follow the solution’s steps. In that case, | try
to follow their proof and find corresponding steps with the solution. If the proof isn't entirely
correct, | give points according to the steps | can find.

22



Finally, typos or other minor mistakes that affect the proof, like writing a < in place of a >
inadvertently or missing a ) _ sign in the Lagrange definition, are also worth -0.5 points each. A
particular case is, if a student misses both ) signs in step 1, the student will get 0 points for
the step.

Briefly explain the importance of this inequality for training SVMs in infinitely dimensional
spaces.

For SVMs, the primal problem cannot be efficiently solved if we are working with infinite dimen-
sions. However, the dual is always finitely-dimensional as long as the dataset is finite and can
be solved using quadratic programming.

Grading note (Xianyao): The main thing | was looking for was a contrast between the pri-
mal and the dual, things like “infeasible” vs. “feasible”, “intractable” vs. “tractable”, “more
efficient”, “easier to solve”, “harder to train”. If a contrast is established with proper expla-
nation (finite vs. infinite dimensions) | normally give 2 points, unless there are major factual
errors. For example, | actually don't know if the primal is intractable or just inefficient so | see
either acceptable, but if a student says “the dual is an upper bound of the primal” (it should
be a lower bound), that is worth -0.5 points.

If they only mention something we can do with the dual (e.g. we can use the kernel trick or
we can transform the problem into finite dimensions) or the primal without contrasting them,
| often give 1 point, as can indicates a subjective choice, whose benefit for SVM training is
unclear. However, if they state that these “allow” or “enable” us to train SVM, | accept it as
half a contrast because these words indicate that we would otherwise not be able to do so, and
| usually give 1.5 points or even 2, based on the other statements.

In other cases, | try to look for something about dimensionality, feasibility and computation
efficiency, but do not give more than 1 point.

23



Question 7: Ensemble Methods (8 pts)

Let foms(.) = = P FO(), where f® for 1 < b < B, denotes the base model trained using
some randomized algorithm A on a sample Z = {(x1,41), .-, (Xn,¥n)} C R? x R. For any
(x, y) € RY x R and any two different 1 < b, b < B, we assume the following:

e Ez 4 [f(b)(x)} =y, i.e. base models are unbiased,
e Vz 4 [f(b)(x)] =02, and

o Covz.a (fO), fOx)) = p.

R 2
For 1 < b < B and arbitrary (x, y) € R? x R, show that for Ez 4 {(fens (x) —y) } <

N 2
Ez 4 {(f(b) (x) — y) to hold, it must be that p < o2. Hint: you may use without proof the

bias—variance decomposition of the MSE.

8 pts

Master solution:
Please note that subscripts are omitted for simplicity of notation.

Recall that {(f (%) yﬂ - <Bias (f‘)>2+V M As Bias(f(z)) = 0, Bz 4 {(fm (x) yﬂ ~
VO] =0,
Since individual base models are unbiased, Bias <_fe“> = Bias ( Zz) . }‘ (®) ) 5 Zb Bias ( ”>> =

Bias (f( )) = 0, using linearity of expectation. Therefore, E { )“’“* —y } f‘”“
Observe that

V| f)]| =V [0 FO)| = g5 [BY |[FO00] + S5y, Cov (f (%) .f<ff><x>)}
= 37 [Bo? + B(B — 1)p].
X 2 R 2
We want to show E {(fe“‘“ (x) — y) } <E [(f(b) (x) — y) } and thus (plugging in the formu-
las of respective variances),
3> [Bo? + B(B — 1)p} < o2
0>+ (B —1)p < Bo?.
(B-1)p< (B 1)
p <o’

Points distribution::

e MSE decomposition (bias® + Var) [1pt]
e Explicitly showing that ensemble is unbiased [1pt] ([0.5pt] if the fact stated without show-
ing)
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Using the unbiasedness, i.e. MSE = Var [1pt]
Rewriting Var(f(z)) in terms of Var(f’(x)) and covariance terms [1pt]
Rewriting the above expression in terms of o and p [1pt]

Simplifying the derived expression (make the logical flow to the conclusion) [1pt] ([0.5pt]
if conclusion stated without any intermediate steps)

vt concison (52, (709 ~1)'] < 22 4| (790~ 0)"] < ) o

Overall correctness of derivations [1pt]

Special cases and comments:

All derivations correct except for the crucial part of rewriting Var(fers(z)) (common
mistake: Var(f"*(x)) = p) [4pt in total, as this is the core of the exercise and simplifies
substantially all the following steps]

All derivations correct but p < o?

asked in the exercise [6 pt in total]

used as assumption, instead of showing it, which was

. 2 .
Ez 4 {(f(b) (x) — y) } = Varz 4(f°(x)) without any explanation [-0.5pt]

Additionally provided incorrect information [-0.5pt]
No explanation of why we look at 5, [Bo? + B(B — 1)p] < o [-0.5pt]
No punishment for omitting subscripts

Both iff and one-way logical flow accepted, as the exercise formulation did not seem clear
enough

All derivations correct but no explanation and justification provided for the steps [-1pt or
-3pt, depending on the extend]
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Question 8: SVM (8 pts)

Test set Shiice Sgob
4 4 4 + Class +1
- Class -1
+ +
2 2 + + _ _ 2 -
. - = F S _ h+ L
ot Tyt |~ ¢+%; — - £ -
0 +E H - = 0 ++ == 0 "+
gl +%—++ T S + 7 - L= + o T
+ 34, — ¥ — = = + W ‘o
) + - -2 + -2 -
-4 -4 -4
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Consider the data sets in the figure above. Alice and Bob want to train an SVM using the
data sets Sajice and Spop, respectively, with |Sajice| = |SBob| = 50. The test set and Sy are
drawn from a distribution D . with P(Y = +1) = P(Y = —1) = 1, while Sg,, is drawn

5!
5?:3 = 15. Alice and Bob can choose between the following

from distribution Dpg,, with ig
two types of SVMs:

R 1 n
fi = arg m1n§||w||§ + 4 Zfl (Soft-margin SVM)
w i=1
s.t. yin.Z'i > 1— fl and 51 > O,VZ € {1, ,n}

- 1
fa= argur)nin§Hw||§ +Cy [ O | Z &+ 00 | Z & (Cost-sensitive SVM)
(=1} fim=1)
s.t. yinIi Z 1-— éz and gz 2 O,V’L S {1, 77l}

e Choose the correct answer.

5 pts

1. How does increasing C affect the number of support vectors of fl(SAlice)?
(] the number of support vectors increases
(] the number of support vectors decreases
[J the number of support vectors is independent of ('
The number of support vectors decreases, as we recover hard margin SVM as C grows
to oo.
2. Suppose that C*), C(=) > 0. How does increasing Cs affect the number of support
vectors of fg(SBob)?
(] the number of support vectors increases
(] the number of support vectors decreases
[J the number of support vectors is independent of Cy
The number of support vectors decreases, as we recover hard margin SVM as C5 grows
to oo.
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3. Let SA ~ Dyjice and SB ~ Dp,p, with ‘SA‘ = }SB‘ = 50. Which is true as C; — oo?

O fl(SA) and fl(SB) have the same bias, but fl(SA) has a higher variance.

O fl( 4) and f1(S®) have the same bias, but f;(S?) has a higher variance.

O fl( B) has both higher bias and higher variance, compared to fl(SA)

O fl( 4) and fl(SB) have the same variance, but fl(SA) has a higher bias.

O £1(S4) and £1(S®) have the same variance, but f1(S?) has a higher bias.

For Ci — oo, we recover the hard margin SVM. The max margin estimator trained
on SB has higher variance, since it depends on fewer negative samples. The bias is
also higher since the average estimator will be closer to the mean of the negative class
conditional.

4. Assume that parameter values are set to C; = C5 = 1. Identify the incorrect statement
among the following:
[J The test error of fl(SAlzce) |s smaller than the test error of fl(SBO,,)
[0 There exists a choice of C™) and C'=) for which the test error of fQ(SBOb) is the
same as that of fl(SAhce)
O Consider the fg(SAlwe) estimator obtained for the fixed values C'*) = 100 and
C) = 1. The test error of fQ(SAlzce) is smaller than the test error of fl(SAlwe)
The last sentence is the false one.

5. How does increasing Cy (think Cy >> C™) and Cy >> C(_)) affect the test error of
Fo(Spob)?
O the test error increases
[J the test error decreases
] the test error is independent of C5
The test error increases with C, as the balancing effect of C*) and C'(-) becomes
dominated by the magnitude of (5.

e Write the Lagrangian of the optimization problem for fQ(DBob).
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1
Lw,a.f)=Slwlf+Co | €y &+ Y

{i:y¢=+1} {’i:yizf

+ Z a;(1—& —yw'z) — Z Bi&i

Grading scheme: Multiple choice:

— —+1 for correct answer, 0 no answer
Lagrangian:

— -1 point for sign errors

— -2 points for missing constraints in the Lagrangian
— -2 points for wrong main objective
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Question 9: Non-parametric Bayesian inference (8 pts)

Let X = (Xy,...,X,) be a sample drawn from a non-parametric mixture of Gaussians. Let
Z = (Zy,...,%Zy,) be random variables taking values in N, according to a CRP. For ¢ < n and
k € N, P(Z; = k) denotes the probability that X; should be assigned to cluster k. For i < n,
denote by Z_; the vector (Z1,...,Z; 1, Zi11,...,Zy). Define X_; analogously.

In the lecture, we constructed a collapsed Gibbs sampler to estimate the posterior distribution.
For this, we needed to compute P(Z; = k | Z_; = 2, X = z,0), for some adequate z and
x = (x1,...,x,). Here, 0 are the priors’ parameters, which we omit for convenience in the

following.

Demonstrate that

P(Z=k|Z,=2,X=2)xP(Z,=k|Z_,=2)X (27)
P(XZ = Z; | X_i = T_;, Zz == l{?, Z—i - Z). (28)

The solution to the problem given in https://ml2.inf.ethz.ch/courses/aml /slides/aml21-lecture-
13-npb.pdf — slide 46/53 and 47/53

29



Question 10: PAC learning (12 pts)

Consider a binary classification problem where the covariates are drawn from an arbitrary dis-
tribution  ~ D and the output variable is given by y = ¢*(z), Vo € X where ¢* € C. Given a
finite data set S = {(x;, y;)}I,, we want to estimate ¢* € C with low error, using a hypothesis
from H.

e Are the following claims true or false?

4 pts

1. The minimum number of samples required to PAC-learn concept class C using functions
from hypothesis class H is determined by the VC dimension of set C.
(] True L] False

False.
2. Assume that C # H. It is necessary that C C H, in order for C to be PAC learnable
from H.
O True [ False
False.

3. The VC dimension of a parametric family of functions is always proportional to the
number of parameters.
U] True Ul False

False. e.g. a parameterized sine function
4. There exists an infinite concept class C (i.e. |C| = oo) that is PAC learnable from
itself.
U] True Ul False
True. e.g. finite VC dimension classes

e Consider the learning problem introduced above. The notation R(h) = E,p1l (¢*(x) # h(x))
denotes t.he populgtion risk ar?d R(h;S) = ﬁ D (wimes I (Yi # h(z;)) the empirical risk,
where 1 is the indicator function.

Assume that C = H and that the set H is finite. Write the optimization problem that
corresponds to empirical risk minimization over C. What is the minimum empirical risk
that can be achieved for an arbitrary data set S = {(x;,y;)}",?

2 pts

Solution: minycc R(h; S) = minyec % Z(.x‘;.[/,)(iﬁ' 1 (y; # h(x;)). Minimum empirical risk
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is 0, achieved by ¢* € C = H.
Grading:
— 41 for the correct optimization problem for ERM.
— +1 for the correct mininum empirical risk.
— —0.5 for any redundant/incorrect statements, constraints, etc.
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e Fore>0,let C. = {h e€C:R(h) > ¢} and assume that min,cc R(h; S) = 0. Show that:

P (Elh €C st R(h;S) = o) <|C|(1 = o)

Hint: Use the union bound, i.e. for a set of events {E,...,E,.}, P(E1 V..V E,) <

>imy P(E).

3 pts

Solution: We know from the previous question the r,,;, = 0. P <3h € C, s.t. R(h; S) = /r'mm> =
P (\/,}ch R(h: S) = o) <Y P (fz(h-, S) = o) <C)1 - e
Grading:
— +1 for transforming the given probability to the probability of the union.
— +1 for applying the union bound.
— +1 for bounding the probability of the union by |C.|[(1 — €)™.
— —0.5 for any redundant/incorrect statements, constraints, etc.
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e Fore>0and § > 0, give a lower bound on n that is polynomial in 1 and } such that
P (3h €Cst. R(h;S) =0and R(h) < e) >1-4. (29)

Hint: You may also use the inequality (1 — z)* < e~ for small .

Solution: P (3h € C, s:t. R(h: ) = rmin) < 1CI(1 = )" < [Cle™™. So R(h) <
ewp. 1 -0 <= [Cle™ < §. Hence, we can write n > 1(log|C| + log5). This
implies the polynomial bound: n > (log|C| + )
Grading:

— +1 for bounding |C|(1 — €)™ by |Cc|e™".

— +1 for showing R(h) < ew.p. 1 =0 < |C,

— +1 for showing the lower bound on n.

e~ < 4.

— —0.5 for any redundant/incorrect statements, constraints, etc.

— 43 for the trivial solution, i.e., the lower bound for n is any constant number. It is
given that C = H, so the inequality (29) is always satisfied by setting h = ¢*. NOTE:
it needs to be a proof, so no points is given for answers that do not explain why (e.g.,
just stating n = 0).
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Question 11: Model selection (12 pts)

Each subquestion is independent of the others. You don't need to have solved the previous ones
to solve the next one.

Prelude: The Kullback-Leibler divergence is a distortion measure between two distributions p
and ¢ over a finite sample space © defined as follows:

p(6
Lo ) = S0y 1ox (2. (30)
0O
Demonstrate that

KL(p | q) | = p(6)logq(6), (31)

0cO

where Hlp] = — > ,.o p(0)logp(f) is the entropy of p:

)

- p\r
KL(p|q) = Zp(;l?) log ( @ > Zp )logp(x) + Zp log (

zeX reX
Z[) ()g ]) Z pla ()U q — ]) — Z[)(;J7> ]Ob qla
zeX zeX zekX

Note: Backward solution also accepted: going from equation 9 to 8.
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Points distribution::

e Each step in master solution [1pt]

e Small error in placement of brackets in any of the equation [-0.5]

Setting: Let X be a space of possible datasets, © a finite space of hypotheses, and R :
© x X — R a cost function. For § € © and X € X, R(#, X) measures how well the model 6
fits the data X.

One of the main goals in machine learning is to compute from a given training set X’ a posterior
distribution p(- | X") over ©. You may assume X’ to be drawn from a distribution p* over X
For 6 € ©, p(6 | X’) measures our confidence that 6 is the right hypothesis for X"

In Lecture 2, we discussed two objectives that such a distribution should fulfil. In general, the
two objectives cannot be fulfilled simultaneously, so a trade off is required.

Objective 1: The posteriors should use the hypothesis class © uniformly when we average over
all experiments. We quantified this in the lecture by requiring p(- | X’) to be as “close” as
possible to the uniform distribution over O, in expectation with respect to X’. Formalize this
objective, as done in the lecture, and then show that it is equivalent to requiring p(- | X’), for
X' € X, to maximize

Ex/[H[p(- | X', (32)

where H is the entropy.
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Master solution:

Formalise:
using minimisation of KL divergence between p(- | X’) and uniform distribution over ©

argmin  Ex/[KL(p(- | X') || Unif(-))]
{p(:|X") X”e\}

X)) Zpﬁ\){ log| 6|

arg min E'x/ (—
p

The right term is constant as log | # | 'is constant and Zp O] X)=1

arg min —Ex: (H (p(- | X))

P

argmax Ex/(H(p(- | X))

p

Points distribution::

Formalise by minimising KL divergence and writing KL divergence term correctly [2 pt]

Applying formula for KL divergence for the given distributions [1.5 pt]

Proof of constant term of right part [1 pt]

e maximizing to maximizing using minus term [0.5 pt]

If maximizing instead of minimizing KL divergence mentioned in formalisation [-1.5 pt]

Objective 2: The distribution must minimize the description length on test data. We formal-
ized this by requiring p(- | X) to minimize

Ex xn [Egx[—logp(d | X")]] . (33)

Here, X" is another dataset drawn from p*. Show that we can bound this expression from below
with

EX’,X" [— log H(X/7 X//)] 5 (34)
where
KX, X") = Zp 6| X"p(6 | X"). (35)
2
pts




Master solution:
Jensen’s inequality: let f(x) be a convex function, then:

Ex f(X) = flEx]

Lower bound on the given objective (-log(X) is convex):
Exrxr Y p(0 | X')[~logp(d | X")] = Exr xn[—log» p(6 | X')p(0 | X")]
0 0
Exrxr Y _p(0] X")[~logp(0 | X")] > Ex: xn [~ log r(X', X")]
o

Points distribution::

e Mention of Jensen Shanon inequality or —log convex [1pt]

e Expectation of [Egxs to summation and using Jensen Shanon inequality (basically last two
inequalities in master solution) [1pt]

e If inequality sign reversed [-1pt]

The new score: The lecture then demonstrated how to combine the two previous results into
the following score:

Exr x [log (16] £(X', X"))] (36)

Briefly explain what this score measures. Should it be maximized or minimized, why? You do
not need to derive Formula 36 for this.

Master solution:

It quantifies how robust the algorithm is to fluctuations between two datasets X’ and X" drawn
at random. Indeed, x(X’, X") is high only when p(- | X’) and p(- | X”) look alike. Therefore,
good learning algorithms shall maximize this score.

Keywords: measures generalization ability or robustness.

Note: referring to objective 1 and 2 for explaining what the score measures are also acceptable.
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Points distribution::

e Maximize [1pt]

e Reason for maximization or what the score measures [1pt]
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