Using flies to find algorithms

Silas Gyger

1. April 2021

\square

Algorithm

A Biological Solution to a Fundamental Distributed Computing Problem ${ }_{\text {by Afek et. al. }}$
Algorithm \| Approach

Outline

1. Problem
2. Approach
3. Solution
4. Critique

Outline

\author{

1. Problem
}
2. Approach
3. Solution
4. Critique

Problem

Maximal Independent Set (MIS)

Example

Example

Example

Maximal Independent Set (MIS)

Given a graph $G=(V, E)$,

Maximal Independent Set (MIS)

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

Maximal Independent Set (MIS)

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

- No two $v \in A$ are connected

Maximal Independent Set (MIS)

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

- No two $v \in A$ are connected - indepence

Maximal Independent Set (MIS)

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

- No two $v \in A$ are connected - indepence
- Adding any $v \notin A$ to A violates previous property

Maximal Independent Set (MIS)

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

- No two $v \in A$ are connected - indepence
- Adding any $v \notin A$ to A violates previous property - maximality

Maximal Independent Set (MIS)
 Equivalent definition

Given a graph $G=(V, E)$,

Maximal Independent Set (MIS)
 Equivalent definition

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

Maximal Independent Set (MIS)

Equivalent definition

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

- Every node $v \in V$ either is in A

Maximal Independent Set (MIS)

Equivalent definition

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

- Every node $v \in V$ either is in A or is adjacent to A

Maximal Independent Set (MIS)

Equivalent definition

Given a graph $G=(V, E)$, find $A \subseteq V$, s.t.

- Every node $v \in V$ either is in A or is adjacent to A
- No two nodes in A are adjacent to each other

Outline

1. Problem
2. Approach
3. Solution
4. Critique

Example

Example

Example

Example

Constraints

- Algorithm runs on nodes

Constraints

- Algorithm runs on nodes
- Nodes can communicate via edges

Constraints

- Algorithm runs on nodes
- Nodes can communicate via edges
- Nodes have no initial knowledge of topology of graph

Constraints

- Algorithm runs on nodes
- Nodes can communicate via edges
- Nodes have no initial knowledge of topology of graph
- Nodes can't selectively recevie or send messages

Outline

1. Problem
2. Approach
3. Solution
4. Critique

Algorithm

1. With probability p : Broadcast
2. If no other node broadcasts:

- Exit as MIS

3. If neighbour exits as MIS:

- Exit as non-MIS

Otherwise: Fail.

Proofs

Proofs

- Correctness

Proofs

- Correctness
- Probability of Success

Proofs

- Correctness
- Probability of Success - $1-\frac{\log n}{n^{2}}$

Proofs

- Correctness
- Probability of Success - $1-\frac{\log n}{n^{2}}$
- Runtime

Proofs

- Correctness
- Probability of Success - $1-\frac{\log n}{n^{2}}$
- Runtime - $O\left(\log ^{2} n\right)$

Proofs

- Correctness
- Probability of Success - $1-\frac{\log n}{n^{2}}$
- Runtime - $O\left(\log ^{2} n\right)$
- Message Complexity

Proofs

- Correctness
- Probability of Success - $1-\frac{\log n}{n^{2}}$
- Runtime - $O\left(\log ^{2} n\right)$
- Message Complexity - $O(n)$

Proofs

- Correctness
- Probability of Success - $1-\frac{\log n}{n^{2}}$
- Runtime - $O\left(\log ^{2} n\right)$
- Message Complexity - $O(n)$

Proofs

- Correctness
- Probability of Success - $1-\frac{\log n}{n^{2}}$
- Runtime - $O\left(\log ^{2} n\right)$
- Message Complexity - $O(n)$

Success $=$ No neighours

To bound probability: Consider maximum degree D of graph.

To bound probability: Consider maximum degree D of graph. Statement:
Maximum degree halves every round with high probability.

After $\log D$ rounds...

After $\log D$ rounds... maximum degree is

$$
\frac{D}{2^{\log D}}=1
$$

Consider v with "too high" degree for round i

Probability v is removed is:

Probability v is removed is:

- v exits as MIS

Probability v is removed is:

- v exits as MIS
- neighbour of v exits as MIS
i.e.
i.e.

$$
P(v \text { or neighbor of } v \text { broadcasts })
$$

i.e.

$$
P(v \text { or neighbor of } v \text { broadcasts }) \cdot P(\text { broadcasting node is sole broadcaster })
$$

i.e.

$$
P(v \text { or neighbor of } v \text { broadcasts }) \cdot P(\text { broadcasting node is sole broadcaster })
$$

turns out:
i.e.

$$
P(v \text { or neighbor of } v \text { broadcasts }) \cdot P \text { (broadcasting node is sole broadcaster })
$$

turns out: constant for their choice of broadcasting probability.

Repeat this step $O(\log n)$ often...

Repeat this step $O(\log n)$ often...superconstant probability.

P (success)

$$
P(\text { success }) \geq P(\text { halved until round } \log D)
$$

$$
P(\text { success }) \geq P(\text { halved until round } \log D) \geq 1-\frac{\log D}{n^{2}}
$$

$$
P(\text { success }) \geq P(\text { halved until round } \log D) \geq 1-\frac{\log D}{n^{2}} \geq 1-\frac{\log n}{n^{2}}
$$

Outline

\author{

1. Problem
}
2. Approach
3. Solution
4. Critique

Critique

- Connection between fly and result not too strong

Critique

- Connection between fly and result not too strong
- Inspiration by previous algorithms high

Critique

- Connection between fly and result not too strong
- Inspiration by previous algorithms high
- ...adaption of previous solution to constraints of fly?
- Analysis not mathematical
- Analysis not mathematical Cited paper:

$$
P(\ldots) \geq\left(1-\frac{1}{d+1}\right)^{d}>\frac{1}{e}
$$

- Analysis not mathematical Cited paper:

$$
P(\ldots) \geq\left(1-\frac{1}{d+1}\right)^{d}>\frac{1}{e}
$$

they used

$$
P(\ldots) \geq\left(1-\frac{1}{d}\right)^{d} \approx \frac{1}{e}
$$

- Analysis not mathematical Cited paper:

$$
P(\ldots) \geq\left(1-\frac{1}{d+1}\right)^{d}>\frac{1}{e}
$$

they used

$$
P(\ldots) \geq\left(1-\frac{1}{d}\right)^{d} \approx \frac{1}{e}
$$

Error: > $\mathbf{0 . 3}$ for $d=1$

Questions?

Show that it halves in rounds $0 \ldots \log D$:

Show that it halves in rounds $0 \ldots \log D$: inductively

- Show round 0

Show that it halves in rounds $0 \ldots \log D$: inductively

- Show round 0
- Assume halved until round $i-1$

Show that it halves in rounds $0 \ldots \log D$: inductively

- Show round 0
- Assume halved until round $i-1$
- Estimate $P(A) \geq P(A \mid B) P(B)$

Show that it halves in rounds $0 \ldots \log D$: inductively

- Show round 0
- Assume halved until round $i-1$
- Estimate $P(A) \geq P(A \mid B) P(B)$

Show that it halves in rounds $0 \ldots \log D$: inductively

- Show round 0
- Assume halved until round $i-1$
- Estimate $P(A) \geq P(A \mid B) P(B)$

$$
P(\text { halved in rounds } 0 . . i)
$$

Show that it halves in rounds $0 \ldots \log D$: inductively

- Show round 0
- Assume halved until round $i-1$
- Estimate $P(A) \geq P(A \mid B) P(B)$
P (halved in rounds $0 . . i$)
$\geq P($ halved in rounds $0 . . i \mid$ halved in rounds $0 \ldots i-1)$
$\cdot P($ halved in rounds $0 \ldots i-1)$

Lemma 4

If

Lemma 4

If

- $D=$ max degree of graph +1

Lemma 4

If

- $D=$ max degree of graph +1
- $D_{i}=$ max degree in round $i+1$

Lemma 4

If

- $D=$ max degree of graph +1
- $D_{i}=$ max degree in round $i+1$

$$
P\left(D_{i} \leq \frac{D}{2^{i}}\right)
$$

Lemma 4

If

- $D=$ max degree of graph +1
- $D_{i}=$ max degree in round $i+1$

$$
P\left(D_{i} \leq \frac{D}{2^{i}}\right) \geq 1-\frac{i}{n^{2}}
$$

Theorem 1

Theorem 1

$$
P(\text { success })
$$

Theorem 1

$$
\begin{aligned}
& P(\text { success }) \\
=\quad & P\left(D_{\text {end }} \leq 1\right)
\end{aligned}
$$

Theorem 1

$$
\begin{aligned}
& P(\text { success }) \\
= & P\left(D_{\text {end }} \leq 1\right) \\
= & P\left(D_{i} \leq \frac{D}{2^{i}}\right) \text { for } i=\log D
\end{aligned}
$$

Theorem 1

$$
\begin{aligned}
& P(\text { success }) \\
= & P\left(D_{\text {end }} \leq 1\right) \\
= & P\left(D_{i} \leq \frac{D}{2^{i}}\right) \text { for } i=\log D \\
\geq & 1-\frac{\log D}{n^{2}}
\end{aligned}
$$

Theorem 1

$$
\begin{aligned}
& P(\text { success }) \\
= & P\left(D_{\text {end }} \leq 1\right) \\
= & P\left(D_{i} \leq \frac{D}{2^{i}}\right) \text { for } i=\log D \\
\geq & 1-\frac{\log D}{n^{2}} \\
\geq & 1-\frac{\log n}{n^{2}}
\end{aligned}
$$

Lemma 4

Lemma 4
$A_{i}=$ in round i, degree is at most $\frac{D}{2^{i}}$

Lemma 4
$A_{i}=$ in round i, degree is at most $\frac{D}{2^{i}}$

$$
P\left(A_{i}\right) \geq 1-\frac{i}{n^{2}}
$$

Lemma 4

Lemma 4

$$
Q(i):=P\left(A_{i}\right) \geq p(i)
$$

Lemma 4

$$
\begin{gathered}
Q(i):=P\left(A_{i}\right) \geq p(i) \\
Q(0) \wedge Q(i-1) \rightarrow Q(i)
\end{gathered}
$$

Lemma 4

$$
P\left(A_{i}\right)
$$

Lemma 4

$$
P\left(A_{i}\right)=P\left(A_{i} \mid A_{i-1}\right) P\left(A_{i-1}\right)+P\left(A_{i} \mid \neg A_{i-1}\right) P\left(\neg A_{i-1}\right)
$$

Lemma 4

$$
P\left(A_{i}\right)=P\left(A_{i} \mid A_{i-1}\right) P\left(A_{i-1}\right)+P\left(A_{i} \mid \neg A_{i-1}\right) P\left(\neg A_{i-1}\right)
$$

Lemma 4

$$
P\left(A_{i}\right)=P\left(A_{i} \mid A_{i-1}\right) \underbrace{P\left(A_{i-1}\right)}_{I H}+P\left(A_{i} \mid \neg A_{i-1}\right) P\left(\neg A_{i-1}\right)
$$

Frame Title

$$
P\left(A_{i} \mid A_{i-1}\right)
$$

Frame Title

$$
P\left(A_{i} \mid A_{i-1}\right)
$$

"after round i, max degree is $d:=\frac{D}{2^{i}}$, assuming before round it's $\frac{D}{2^{i-1}}=2 d^{\prime \prime}$

Frame Title

d max degree after round i
$2 d$ max degree before round i

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
Let $v=$ node with degree $>d$.

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
Let $v=$ node with degree $>d$.Then

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
Let $v=$ node with degree $>d$.Then

$$
P(v \text { or neighbour of } v \text { broadcasts })
$$

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
Let $v=$ node with degree $>d$.Then

$$
\begin{aligned}
& P(v \text { or neighbour of } v \text { broadcasts }) \\
= & 1-P(\text { neither } v \text { nor neighbour of } v \text { broadcasts })
\end{aligned}
$$

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
Let $v=$ node with degree $>d$.Then

$$
\begin{aligned}
& P(v \text { or neighbour of } v \text { broadcasts }) \\
= & 1-P(\text { neither } v \text { nor neighbour of } v \text { broadcasts }) \\
\geq & 1-\left(1-\frac{1}{d}\right)^{d}
\end{aligned}
$$

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
Let $v=$ node with degree $>d$.Then

$$
\begin{aligned}
& P(v \text { or neighbour of } v \text { broadcasts }) \\
= & 1-P(\text { neither } v \text { nor neighbour of } v \text { broadcasts }) \\
\geq & 1-\left(1-\frac{1}{d}\right)^{d} \approx 1-\frac{1}{e}
\end{aligned}
$$

Frame Title

d max degree after round i
$2 d$ max degree before round i

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
P (broadcast doesn't collide|broadcast happens)

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
P (broadcast doesn't collide|broadcast happens)
$\geq(1-P(\text { neighbour broadcasts }))^{2 d}$

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
P (broadcast doesn't collide|broadcast happens)
$\geq(1-P(\text { neighbour broadcasts }))^{2 d}$
$=\left(1-\frac{1}{d}\right)^{2 d}$

Frame Title

d max degree after round i
$2 d$ max degree before round i
$\frac{1}{d}$ probability for node to broadcast in round i
P (broadcast doesn't collide|broadcast happens)
$\geq(1-P(\text { neighbour broadcasts }))^{2 d}$
$=\left(1-\frac{1}{d}\right)^{2 d} \approx \frac{1}{e^{2}}$

Frame Title

Hence, probability that v is removed in this step is is

Frame Title

Hence, probability that v is removed in this step is is

$$
\geq\left(1-\frac{1}{e}\right) \frac{1}{e^{2}}
$$

Frame Title

Hence, probability that v is removed in this step is is

$$
\begin{aligned}
& \geq\left(1-\frac{1}{e}\right) \frac{1}{e^{2}} \\
& >\frac{1}{2^{4}}
\end{aligned}
$$

$P(v$ removed this round $))$

$$
P(v \text { removed this round })) \geq \ldots
$$

$$
P(v \text { removed this round })) \geq \ldots>1-\frac{1}{n^{3}}
$$

$$
P(v \text { removed this round })) \geq \ldots>1-\frac{1}{n^{3}}
$$

$$
\Uparrow
$$

$$
\begin{aligned}
&P(v \text { removed this round })) \geq \ldots>1-\frac{1}{n^{3}} \\
& \Rightarrow \quad P(\text { all nodes with deg }>d \text { removed })
\end{aligned}
$$

$$
\begin{aligned}
& P(v \text { removed this round }) \geq \ldots>1-\frac{1}{n^{3}} \\
& \Rightarrow \quad P(\text { all nodes with deg }>d \text { removed }) \geq 1-\frac{1}{n^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& P(v \text { removed this round })) \geq \ldots>1-\frac{1}{n^{3}} \\
& \Rightarrow \quad P(\text { all nodes with deg }>d \text { removed }) \geq 1-\frac{1}{n^{2}} \\
& \quad=P\left(A_{i} \mid A_{i-1}\right)
\end{aligned}
$$

Putting it together

$$
P\left(A_{i}\right)
$$

Putting it together

$$
P\left(A_{i}\right) \geq P\left(A_{i} \mid A_{i-1}\right) P\left(A_{i-1}\right)
$$

Putting it together

$$
\begin{aligned}
P\left(A_{i}\right) & \geq P\left(A_{i} \mid A_{i-1}\right) P\left(A_{i-1}\right) \\
& \geq\left(1-\frac{1}{n^{2}}\right) P\left(A_{i-1}\right)
\end{aligned}
$$

Putting it together

$$
\begin{aligned}
P\left(A_{i}\right) & \geq P\left(A_{i} \mid A_{i-1}\right) P\left(A_{i-1}\right) \\
& \geq\left(1-\frac{1}{n^{2}}\right) P\left(A_{i-1}\right) \\
& \geq\left(q-\frac{1}{n^{2}}\right)\left(1-\frac{i-1}{n^{2}}\right)
\end{aligned}
$$

Putting it together

$$
\begin{aligned}
P\left(A_{i}\right) & \geq P\left(A_{i} \mid A_{i-1}\right) P\left(A_{i-1}\right) \\
& \geq\left(1-\frac{1}{n^{2}}\right) P\left(A_{i-1}\right) \\
& \geq\left(q-\frac{1}{n^{2}}\right)\left(1-\frac{i-1}{n^{2}}\right) \\
& >1-\frac{i}{n^{2}}
\end{aligned}
$$

Putting it together

$$
\begin{aligned}
P\left(A_{i}\right) & \geq P\left(A_{i} \mid A_{i-1}\right) P\left(A_{i-1}\right) \\
& \geq\left(1-\frac{1}{n^{2}}\right) P\left(A_{i-1}\right) \\
& \geq\left(q-\frac{1}{n^{2}}\right)\left(1-\frac{i-1}{n^{2}}\right) \\
& >1-\frac{i}{n^{2}} \\
& \equiv \text { Lemma } 4
\end{aligned}
$$

