
Optimal dislocation with
persistent errors in
subquadratic time

Demo Talk for Student Seminar
(”bad” version)

ETH Zurich

Notation

• S∗ = {1, 2, ... , N} = sorted sequence
• S = any sequence
• rank(x , S) := |{y ∈ S| y < x}| .
• disloc(x , S) = |x − rank(x , S)|

Notation

• S∗ = {1, 2, ... , N} = sorted sequence
• S = any sequence
• rank(x , S) := |{y ∈ S| y < x}| .
• disloc(x , S) = |x − rank(x , S)|

Definition 1 An algorithm has maximum dislocation
d = d(N) (with high probability) if, for any input
sequence of N elements, it returns a sequence S such that
disloc(x , S) ≤ d for all elements x with probability at
least 1− 1/poly(N).

Prior Work

• Geissmann et al (2016): no (possibly randomized)
algorithm can achieve maximum dislocation o(log n)
with high probability.

• Klein et al. (2011): max dislocation O(log N) in
time O(N2), where p < 1/16 is the comparison
error probability.

• Braverman and Mossel (2008): max dislocation
O(log N) in time O(N3 + C), where p < 1/2 is the
comparison error probability.

Main Result

Theorem Recursive Window Sort returns a sequence
with maximum dislocation κ log N with probability at least
1− 1

N2 . Moreover, its running time is Õ(N 3
2) and the

expected total dislocation of the returned sequence is O(n).

Warm Up

• Start with a random permutation S of the input
sequence and split this sequence S into β blocks of
the same size.

• Run Window Sort on each block Bi to obtain a
sequence Si .

• Combine all the sequences Si together into a sequence
S ′ as follows: The first element in each Si will be
placed (in arbitrary order) in one of the first β
positions of S ′, the second element in each Si will be
placed in a position between β + 1 and 2β in S ′, and
so on.

• Run Window Sort on this new sequence S ′.

The Algorithm (1/3)

Algorithm NewWindowSort
(on N distinct elements)
1) Let S be a random permutation the N input elements
2) Run RecStep on S (with initial depth d = 0)
3) Return the resulting sequence

The Algorithm (2/3)

Algorithm RecStep
(on a sequence S of nd distinct elements at depth d)
1) If d = h then

a) Run WindowSort on S ′ = S with window size nd
b) Return the resulting sequence

2) Else
a) Partition S into bd := nd

βd
blocks B1, B2, ... , Bbd each containing

βd elements
b) For each block Bi

i) Run RecStep on Bi with depth d + 1 to obtain
B′i = 〈b′i ,1, b′i ,2, ... , b′i ,βd

〉
c) For each j = 1, 2, ... ,βd do

B′′j = 〈b′1,j , b′2,j , ... , b′bd ,j〉
d) Let S ′ = 〈s ′1, s ′2, ... , s ′nd

〉 = 〈B′′1 , B′′2 , ... , B′′βd
〉

e) Run WindowSort on S ′ with window size Wd
f) Return the resulting sequence

The Algorithm (3/3)

βd
4= n

1− 1
2h−d+1−1

d and Wd
4= 4κ nd√

βd
log N.

To optimize the running time, we set the
parameters as follows:

Analysis

βd
4= n

1− 1
2h−d+1−1

d and Wd
4= 4κ nd√

βd
log N.

To optimize the running time, we set the
parameters as follows:

Lemma The overall running time of
NewWindowSort is Õ(N 3

2).

Ti ≤ c(i + 1)n1+2i/(2i+1−1)
d log N

proof Running time at depth d = h − i is

for some c constant.

Analysis

Ti−1 ≤ c i n
1+ 2i−1

(2i −1)
d+1 log N = ciβ

1+ 2i−1
2i −1

d log N

by the WindowSort running time

Depth d make bd = nd
βd

calls at level d + 1

Base case: i = 0 (d = h)
T0 ≤ cn2

d ≤ cn1+20/(21−1)
d

Inductive step: true for i − 1 (depth d + 1)

and a call to WindowSort on nd elements with initial
window size Wd = 4κ nd√

βd
log N

Analysis

Ti ≤ nd
βd
· ciβ

1+ 2i−1
2i −1

d log N + 4κc ′ n2
d√
βd

log N =

c
(

indβ
2i−1
2i −1
d + n

3
2 + 1

2i+2−2
d

)
log N =

c
(

in
1+ 2i

2i+1−1
d + n

1+ 2i
2i+1−1

d

)
log N = c(i + 1)n

1+ 2i
2i+1−1

d · log N

Analysis

Ti ≤ nd
βd
· ciβ

1+ 2i−1
2i −1

d log N + 4κc ′ n2
d√
βd

log N =

c
(

indβ
2i−1
2i −1
d + n

3
2 + 1

2i+2−2
d

)
log N =

c
(

in
1+ 2i

2i+1−1
d + n

1+ 2i
2i+1−1

d

)
log N = c(i + 1)n

1+ 2i
2i+1−1

d · log N

Ti ≤ c(i + 1)n1+2i/(2i+1−1)
d log N

Running time at depth d = h − i is

for some c constant.

Analysis

Ti ≤ c(i + 1)n1+2i/(2i+1−1)
d log N

Running time at depth d = h − i is

for some c constant.

Th ≤ cn1+N/(2i+1−1)
0 log N

For i = h = log N (depth d = 0)

Is It Clear?

Thank you

	Logit Dynamics with Concurrent Updates

