Optimal dislocation with persistent errors in subquadratic time

> Demo Talk for Student Seminar ("bad" version)

> > ETH Zurich

Notation

.

•
$$S^* = \{1, 2, ..., N\} = \text{sorted sequence}$$

•
$$rank(x, S) := |\{y \in S | y < x\}|$$

•
$$disloc(x, S) = |x - rank(x, S)|$$

Notation

•
$$S^* = \{1, 2, \dots, N\} = \text{sorted sequence}$$

•
$$rank(x, S) := |\{y \in S | y < x\}|$$

•
$$disloc(x, S) = |x - rank(x, S)|$$

Definition 1 An algorithm has maximum dislocation d = d(N) (with high probability) if, for any input sequence of N elements, it returns a sequence S such that $disloc(x, S) \leq d$ for all elements x with probability at least 1 - 1/poly(N).

Prior Work

- Braverman and Mossel (2008): max dislocation
 O(log N) in time O(N3 + C), where p < 1/2 is the comparison error probability.
- Klein et al. (2011): max dislocation O(log N) in time O(N²), where p < 1/16 is the comparison error probability.
- Geissmann et al (2016): no (possibly randomized) algorithm can achieve maximum dislocation o(log n) with high probability.

Main Result

Theorem RECURSIVE WINDOW SORT returns a sequence with maximum dislocation $\kappa \log N$ with probability at least $1 - \frac{1}{N^2}$. Moreover, its running time is $\tilde{O}(N^{\frac{3}{2}})$ and the expected total dislocation of the returned sequence is O(n).

Warm Up

- Start with a random permutation S of the input sequence and split this sequence S into β blocks of the same size.
- Run WINDOW SORT on each block B_i to obtain a sequence S_i.
- Combine all the sequences S_i together into a sequence S' as follows: The first element in each S_i will be placed (in arbitrary order) in one of the first β positions of S', the second element in each S_i will be placed in a position between β + 1 and 2β in S', and so on.
- Run WINDOW SORT on this new sequence S'.

The Algorithm (1/3)

$\label{eq:algorithm} Algorithm \ {\rm NewWindowSort}$

(on *N* distinct elements)

- 1) Let S be a random permutation the N input elements
- 2) Run RECSTEP on S (with initial depth d = 0)
- 3) Return the resulting sequence

The Algorithm (2/3)

Algorithm RECSTEP

(on a sequence S of n_d distinct elements at depth d)

1) If d = h then

a) Run WINDOWSORT on S' = S with window size n_d

b) Return the resulting sequence

2) Else

a) Partition S into $b_d := \frac{n_d}{\beta_d}$ blocks B_1, B_2, \dots, B_{b_d} each containing β_d elements

b) For each *block* B_i
i) Run RECSTEP on B_i with depth d + 1 to obtain B'_i = ⟨b'_{i,1}, b'_{i,2}, ..., b'_{i,βd}⟩
c) For each j = 1, 2, ..., β_d do
B''_j = ⟨b'_{1,j}, b'_{2,j}, ..., b'_{bd,j}⟩
d) Let S' = ⟨s'₁, s'₂, ..., s'_{nd}⟩ = ⟨B''₁, B''₂, ..., B''_{βd}⟩
e) Run WINDOWSORT on S' with window size W_d
f) Return the resulting sequence

The Algorithm (3/3)

To optimize the running time, we set the parameters as follows:

$$\beta_d \stackrel{\triangle}{=} n_d^{1-\frac{1}{2^{h-d+1}-1}}$$
 and $W_d \stackrel{\triangle}{=} 4\kappa \frac{n_d}{\sqrt{\beta_d}} \log N.$

To optimize the running time, we set the parameters as follows:

$$\beta_d \stackrel{\triangle}{=} n_d^{1-\frac{1}{2^{h-d+1}-1}}$$
 and $W_d \stackrel{\triangle}{=} 4\kappa \frac{n_d}{\sqrt{\beta_d}} \log N$.

Lemma The overall running time of NEWWINDOWSORT is $\widetilde{O}(N^{\frac{3}{2}})$.

proof Running time at depth d = h - i is $T_i \leq c(i+1)n_d^{1+2^i/(2^{i+1}-1)} \log N$

for some *c* constant.

Base case: i = 0 (d = h) $T_0 \le cn_d^2 \le cn_d^{1+2^0/(2^1-1)}$ by the WINDOWSORT running time Inductive step: true for i - 1 (depth d + 1) $T_{i-1} \le c i n_{d+1}^{1+\frac{2^{i-1}}{(2^i-1)}} \log N = ci \beta_d^{1+\frac{2^{i-1}}{2^i-1}} \log N$

Depth d make $b_d = rac{n_d}{eta_d}$ calls at level d+1

and a call to WINDOWSORT on n_d elements with initial window size $W_d = 4\kappa \frac{n_d}{\sqrt{\beta_d}} \log N$

$$T_{i} \leq \frac{n_{d}}{\beta_{d}} \cdot ci\beta_{d}^{1 + \frac{2^{i-1}}{2^{i}-1}} \log N + 4\kappa c' \frac{n_{d}^{2}}{\sqrt{\beta_{d}}} \log N = c\left(in_{d}\beta_{d}^{\frac{2^{i-1}}{2^{i}-1}} + n_{d}^{\frac{3}{2} + \frac{1}{2^{i+2}-2}}\right) \log N = c\left(in_{d}^{1 + \frac{2^{i}}{2^{i+1}-1}} + n_{d}^{1 + \frac{2^{i}}{2^{i+1}-1}}\right) \log N = c(i+1)n_{d}^{1 + \frac{2^{i}}{2^{i+1}-1}} \cdot \log N$$

$$T_{i} \leq \frac{n_{d}}{\beta_{d}} \cdot ci\beta_{d}^{1 + \frac{2^{i-1}}{2^{i-1}}} \log N + 4\kappa c' \frac{n_{d}^{2}}{\sqrt{\beta_{d}}} \log N = c\left(in_{d}\beta_{d}^{\frac{2^{i-1}}{2^{i-1}}} + n_{d}^{\frac{3}{2} + \frac{1}{2^{i+2} - 2}}\right) \log N = c\left(in_{d}^{1 + \frac{2^{i}}{2^{i+1} - 1}} + n_{d}^{1 + \frac{2^{i}}{2^{i+1} - 1}}\right) \log N = c(i+1)n_{d}^{1 + \frac{2^{i}}{2^{i+1} - 1}} \cdot \log N$$

Running time at depth d = h - i is $T_i \leq c(i+1)n_d^{1+2^i/(2^{i+1}-1)}\log N$

for some c constant.

For $i = h = \log N$ (depth d = 0)

$$T_h \leq c n_0^{1+N/(2^{i+1}-1)} \log N$$

Running time at depth d = h - i is $T_i \leq c(i+1)n_d^{1+2^i/(2^{i+1}-1)} \log N$

for some c constant.

Is It Clear?

Thank you