Optimal dislocation with persistent errors in subquadratic time

Demo Talk for Student Seminar ("bad" version)

ETH Zurich

Notation

- $S^{*}=\{1,2, \ldots, N\}=$ sorted sequence
- $S=$ any sequence
- $\operatorname{rank}(x, S):=|\{y \in S \mid y<x\}|$.
- $\operatorname{disloc}(x, S)=|x-\operatorname{rank}(x, S)|$

Notation

- $S^{*}=\{1,2, \ldots, N\}=$ sorted sequence
- $S=$ any sequence
- $\operatorname{rank}(x, S):=|\{y \in S \mid y<x\}|$.
- $\operatorname{disloc}(x, S)=|x-\operatorname{rank}(x, S)|$

Definition 1 An algorithm has maximum dislocation $d=d(N)$ (with high probability) if, for any input sequence of N elements, it returns a sequence S such that $\operatorname{disloc}(x, S) \leq d$ for all elements x with probability at least $1-1 / \operatorname{poly}(N)$.

Prior Work

- Braverman and Mossel (2008): max dislocation $O(\log N)$ in time $O(N 3+C)$, where $p<1 / 2$ is the comparison error probability.
- Klein et al. (2011): max dislocation $O(\log N)$ in time $O\left(N^{2}\right)$, where $p<1 / 16$ is the comparison error probability.
- Geissmann et al (2016): no (possibly randomized) algorithm can achieve maximum dislocation o(log n) with high probability.

Main Result

Theorem Recursive Window Sort returns a sequence with maximum dislocation $\kappa \log N$ with probability at least $1-\frac{1}{N^{2}}$. Moreover, its running time is $\widetilde{O}\left(N^{\frac{3}{2}}\right)$ and the expected total dislocation of the returned sequence is $O(n)$.

Warm Up

- Start with a random permutation S of the input sequence and split this sequence S into β blocks of the same size.
- Run Window Sort on each block B_{i} to obtain a sequence S_{i}.
- Combine all the sequences S_{i} together into a sequence S^{\prime} as follows: The first element in each S_{i} will be placed (in arbitrary order) in one of the first β positions of S^{\prime}, the second element in each S_{i} will be placed in a position between $\beta+1$ and 2β in S^{\prime}, and so on.
- Run Window Sort on this new sequence S^{\prime}.

The Algorithm (1/3)

Algorithm NewWindowSort (on N distinct elements)

1) Let S be a random permutation the N input elements
2) Run RecStep on S (with initial depth $d=0$)
3) Return the resulting sequence

The Algorithm (2/3)

Algorithm RecStep
(on a sequence S of n_{d} distinct elements at depth d)

1) If $d=h$ then
a) Run WindowSort on $S^{\prime}=S$ with window size n_{d}
b) Return the resulting sequence
2) Else
a) Partition S into $b_{d}:=\frac{n_{d}}{\beta_{d}}$ blocks $B_{1}, B_{2}, \ldots, B_{b_{d}}$ each containing β_{d} elements
b) For each block B_{i}
i) Run RecStep on B_{i} with depth $d+1$ to obtain

$$
B_{i}^{\prime}=\left\langle b_{i, 1}^{\prime}, b_{i, 2}^{\prime}, \ldots, b_{i, \beta_{d}}^{\prime}\right\rangle
$$

c) For each $j=1,2, \ldots, \beta_{d}$ do

$$
B_{j}^{\prime \prime}=\left\langle b_{1, j}^{\prime}, b_{2, j}^{\prime}, \ldots, b_{b_{d}, j}^{\prime}\right\rangle
$$

d) Let $S^{\prime}=\left\langle s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n_{d}}^{\prime}\right\rangle \stackrel{ }{=}\left\langle B_{1}^{\prime \prime}, B_{2}^{\prime \prime}, \ldots, B_{\beta_{d}}^{\prime \prime}\right\rangle$
e) Run WindowSort on S^{\prime} with window size W_{d}
f) Return the resulting sequence

The Algorithm (3/3)

To optimize the running time, we set the parameters as follows:

$$
\beta_{d} \triangleq n_{d}^{1-\frac{1}{2^{h-d+1}-1}} \quad \text { and } \quad W_{d} \triangleq 4 \kappa \frac{n_{d}}{\sqrt{\beta_{d}}} \log N .
$$

Analysis

To optimize the running time, we set the parameters as follows:

$$
\beta_{d} \triangleq n_{d}^{1-\frac{1}{2^{h-d+1}-1}} \quad \text { and } \quad W_{d} \triangleq 4 \kappa \frac{n_{d}}{\sqrt{\beta_{d}}} \log N .
$$

Lemma The overall running time of NewWindowSort is $\widetilde{O}\left(N^{\frac{3}{2}}\right)$.
proof Running time at depth $d=h-i$ is

$$
T_{i} \leq c(i+1) n_{d}^{1+2^{i} /\left(2^{i+1}-1\right)} \log N
$$

for some c constant.

Analysis

Base case: $i=0 \quad(d=h)$

$$
T_{0} \leq c n_{d}^{2} \leq c n_{d}^{1+2^{0} /\left(2^{1}-1\right)}
$$

by the WindowSort running time
Inductive step: true for $i-1$ (depth $d+1$)

$$
T_{i-1} \leq \operatorname{cin}_{d+1}^{1+\frac{2^{i-1}}{(2 i-1)}} \log N=c i \beta_{d}^{1+\frac{2^{i-1}}{2^{i}-1}} \log N
$$

Depth d make $b_{d}=\frac{n_{d}}{\beta_{d}}$ calls at level $d+1$
and a call to WindowSort on n_{d} elements with initial window size $W_{d}=4 \kappa \frac{n_{d}}{\sqrt{\beta_{d}}} \log N$

Analysis

$$
\begin{aligned}
& T_{i} \leq \frac{n_{d}}{\beta_{d}} \cdot c i \beta_{d}^{1+\frac{2^{i-1}}{2^{i}-1}} \log N+4 \kappa c^{\prime} \frac{n_{d}^{2}}{\sqrt{\beta_{d}}} \log N= \\
& c\left(i n_{d} \beta_{d}^{\frac{2^{i-1}}{2^{i}-1}}+n_{d}^{\frac{3}{2}+\frac{1}{2^{i+2}-2}}\right) \log N= \\
& c\left(i n_{d}^{1+\frac{2^{i}}{2^{i+1}-1}}+n_{d}^{1+\frac{2^{i}}{2^{i+1}-1}}\right) \log N=c(i+1) n_{d}^{1+\frac{2^{i}}{2^{i+1}-1}} \cdot \log N
\end{aligned}
$$

Analysis

$$
\begin{aligned}
& T_{i} \leq \frac{n_{d}}{\beta_{d}} \cdot c i \beta_{d}^{1+\frac{2^{i-1}}{2^{i}-1}} \log N+4 \kappa c^{\prime} \frac{n_{d}^{2}}{\sqrt{\beta_{d}}} \log N= \\
& c\left(i n_{d} \beta_{d}^{\frac{2^{i-1}}{2^{i}-1}}+n_{d}^{\frac{3}{2}+\frac{1}{2^{i+2}-2}}\right) \log N= \\
& c\left(i n_{d}^{1+\frac{2^{i}}{2^{i+1}-1}}+n_{d}^{1+\frac{2^{i}}{2^{i+1}-1}}\right) \log N=c(i+1) n_{d}^{1+\frac{2^{i}}{2^{i+1}-1}} \cdot \log N
\end{aligned}
$$

Running time at depth $d=h-i$ is

$$
T_{i} \leq c(i+1) n_{d}^{1+2^{i} /\left(2^{i+1}-1\right)} \log N
$$

for some constant.

Analysis

For $i=h=\log N($ depth $d=0)$

$$
T_{h} \leq c n_{0}^{1+N /\left(2^{i+1}-1\right)} \log N
$$

Running time at depth $d=h-i$ is

$$
T_{i} \leq c(i+1) n_{d}^{1+2^{i} /\left(2^{i+1}-1\right)} \log N
$$

for some c constant.
Is It Clear?

Thank you

